Sponge-based PRNGs
A Provable Security Perspective

Stefano Tessaro
UCSB

Base on joint work with Peter Gazi (IST Austria)

wrOng
Paris, April 30, 2017

The Sponge Construction sopvaos;

r-bit bl

[

ocks:

C=N-r—

ﬁ-

e

M,

:

vy

0 —>

T

/

M& {0,1}*

&

e ———

/

(invertible) permutation n - n bits

truncate to r bits

The Sponge Paradigm — Beyond hashing

The sponge paradigm has been used to build:

* Authenticated encryption schemes
* Message-authentication codes / PRFs

* PRNGs

Pseudorandom Number Generators

PRNG with
& e : I
[/ input!
_.“
P weak ——> entropypool ——p Pseudorandom
randomne bits
)

£)

.~

* Few PRNGs come with security proofs.

[Barak-Halevi, CCS’15], [Dodis-Pointcheval-Ruhault-Vergnaud-Wichs,
CCS’13], [Shrimpton-Tarashima, EC’15], [Dodis-Shamir-Stephens-
Davidovitz-Wichs, C'15]

* Real-world PRNGs rarely designed with
provable security in mind!

This talk, in a nutshell

challenges in their provable security!

Talk based on: Peter Gazi and Stefano Tessaro. Provably Robust
Sponge-Based PRNGs and KDFs. EUROCRYPT ‘16

Main take-home messages:
1. Sponge-based PRNGs are elegant designs.

2. Proper analysis of sponge-based PRNGs
presents several technical challenges.

3. This will bring up some food-for-thought.

Roadmap of this talk

1. PRNGs: Sponge-based Instantiations

2. Provably-robust sponge-based PRNGs

3. Conclusions and open questions

PRNGs with Input [DPRVW13]

state input seed state

bl SN

Cwew | wen e

4 ! v

seed new hew output .

So —{ refresh H refresh J—{ next H refresh H next J—»
ot ¢ 1 1

seed seed seed seed seed

Desiderata — Pseudorandomness

Pseudorandomness: Output bits of next are
indistinguishable from truly random bits,
provided enough entropy is injected.

Random! Random!
& S Pt FI=
. N AN
| ! t | t
—>[refresh J—b[refresh H next J—»[refresh H next }—»
1 1 1 1 1

seed seed seed seed seed

Desiderata — Forward secrecy

Forward secrecy: Even if the attacker
compromises the state, it cannot distinguish
previous outputs from random!

Possibly not
Random! random!
N .»‘f — P
; \;/Qf‘/ N\
| ! t o t
—>[refresh J—b[refresh H next —» refresh H next }—»
J 1 U
f f f \ f f
seed seed seed seed seed

Desiderata — Backward secrecy

Backward secrecy: Even if the attacker
compromises the state, future bits are
pseudorandom after enough entropy is injected.

Possibly not
random! Random!
I N N \a/i_p/
L : ¢)
—>[refresh —» refresh H next J—b[refresh H next }—»
J I\
f \ f f f f

seed seed seed

The Sponge Construction sopvaos;

r-bit bl

[

ocks:

C=N-r—

ﬁ-

e

M,

:

vy

0 —>

T

/

M& {0,1}*

&

e ———

/

(invertible) permutation n - n bits

truncate to r bits

Sponge-based PRNGs: Existing Proposal (sorvaio

-
0 >

. LA s 0
.

N s e —
ri- —> -—)é—) > -_———>
T ¢ TC | T TC | T
o E———— : > ; > > : > -———
N PAN p AN AN DA
refresh refresh next refresh next

* simple and elegant
e analysis in simple model
 implemented, e.g., on

Three main issues with
design + analysis we are

aiming two resolve!
microcontrollers [vHv14]

Problem 1: No Forward Secrecy

o A . @3
S = e e (e e 1
ri- —> ‘)é—) > - ———>
T | T | | T T | T
—> > 5 > ——> ¥ > -—=—>
- AN y, J\ p A
refresh refresh next

next refresh
Can easily compute
m~1(T) and distinguish!

* recognized in [BDPVA10]
* proposed patch: zeroing upper bits after next
— not analyzed

Problem 2: No Seed

Pseudorandomness: If inputs have sufficient
entropy, then output should be uniform!

(I3, 15) uniformly

11 : 12 : Z . . .

o o : distributed such that
; A : : :

A S A N A first bit of Z equals

ié ; : é 0.
W >

T | T | T .
> < > Clearly, Z is not

] : |

. AN y : pseudorandom!

refresh refresh next Yet, (11,12) has

almost max entropy!

[BDPVA10] did not have this issue, due to technical
(only one bit loss)

reasons in their proof ... coming next ...

Problem 3: Modeling the Permutation

& & &=
g (A N >] BV E—
ri- —> -—)é—) > - ———>
T | T | T T | T
o : > 5 > > : > -——=—
- BAN PRV AN AN

refresh refresh next refresh next

Proofs for sponge-based construction rely on the random
permutation model! l.e., w is random + adversary has
accesstom /w1

Previous attack: Input distribution depends on !!! “/ @) &
Existing proofs: Distribution is independent of rr!!! M
‘ \

Permutation-dependence and the seed: Why care?

Typical argument: Real-world
distributions behave nicely!

Possible, but ... it is not easy to characterize
what “real-world distribution” means...

Roadmap of this talk

1. PRNGs: Sponge-based Instantiations

2. Provably-robust sponge-based PRNGs

3. Conclusions and open questions

Our goals

Goal: Find a sponge-based PRNG with:
* Forward secrecy + backward secrecy.

 Pseudorandomness for all high-entropy
sources

— including those that may depend on the permutation.

SPRG: Our Proposal for Sponge-based PRNGs

input

seed -")EB

output

E ¥4 A
—- |- ‘o

T || T T :
- > L > - -—TT =

Q AN)

- refresh - next :

- setup: sample seed
- refresh: input whitening using seed
- next: upper-state zeroing, additional n-call

How to model security?

Robustness notion [DPRVW13] adapted to the
random permutation model.

Main ideas:
* The source of weak randomness is also adversarial.
* |Incorporates both forward and backward security

within same security game!

Distribution sampler D Attacker A
generates inputs to PRNG - knows the seed
legitimate: provides truthful - can compromise state
entropy lower bounds - can trigger refresh
does not know seed! - can ask for a real-or-random

challenge

Robust PRNGS [prrvwi3]

L Pl

Iy

Z1,Y1

—>[refresh
seed

I

M,

refresh
eed

A A A
5 \4 v 5
seed —>[A H A H A

Z2,Y2 I3 Z3,VY3
next refresl#n next
] [seed] [seed seed
A
¢Y1

R

Legitimate sampler:
HOO(Ij‘Ii#-'j)Zl)ZZJ ‘e, Zk) =)/]

Here: H, (X|Y) = minH,(X|Y = y)
y

Robust PRNGS [prrvwia:

- seed < setup()
- inital state « IV
- b « {0,1}

Adv) 0P (A,D) = 2 -

Prlb=b"]—-1

refresh:
(1,v;,2) < D; refresh(seed, I;)

return (z J,y])

get-state: returns current state

set-state: sets current state

= Compromise!

get-challenge:

R, < next(seed); R, « $

if O)y; = v since last compromise)
return R,

else return R

Extension to the Random Permutation Model

Basic idea: Add permutation access for everyone!

init:
- seed « setu@)

- initial state < IV
- b « {0,1}

[Yes, even for D!]

seed

return (zj, yj)

refresh:
(IJ,]/],Z]) «— @refresl‘@eed, I])

get-state: returns current state

— Compromise!

set-state: sets current state

get-challenge:
Ry « ne:@seed); Ry « %

if)y; = v~ since last compromise)

return R,
else return R

RPM Legitimate Samplers

Catch: What does Hoo(Ij‘Iiij,zl,zz, e, Zk) =Y
mean in the RPM?
— I; may be unpredictable only for attackers with
bounded queries to
— Example: [; = 7 (0™)

Current definition of legitimate
sampler: A somewhat-unsatisfactory
monster!

Legitimate samplers

Hoo(Ii|lij, 21, 22, .. 21) = v

“No adversary making q,. queries to 1 should
be able to guess I; with prob. better than 277,
even given all I; forj # i, z4, ..., Zy, and all
permutations queries made by D, except those
needed to compute [;”

“q.-legitimate sampler”

Main Theorem — Robustness Sigotn = UAL 0 = Ha

input
: n=r+c
seed = :
' output

~Pp _
=1 -
_

T 7@ T

c bits

AN /

refresh next

Theorem. [Informal] VD, A making < q,; queries, and A making
< gp real-or-random queries:

Adv gRNr(g °(4,D) < qr X (something small)

As long as: g, < min{2'", 22 2"}

Proof overview — Two Steps

y*-recovering security
N =
seed—»[W —----22(D Y vs "f:“,

N
J L
\ ’4 o) w) R A
So refresh refresh ----—>[refresh [next J—»
Z]/l >]/ seed seed seed seed

preserving security

If initialized with “good e A e
state”, output of next is Y vs ..~
\\-/\ /
pseudorandom for
adversarially chosen
oty o “sood state” refresh refresh H next }—»
seed seed seed

Two key lemmas

source material

“Sponge extraction

lemma” seed seed
> (0)
v m n| |u
— > > "

Analysis of next

[
7y ‘\\)
> > —d Or
S TT TT T
—>> —
N\ /

next

Key Lemma- Sponge Extraction

Key question: Can sponges act as good randomness
extractors?

seed seed

6. 0o O
\Y T T u
> | — "

E.g. (seed,out) = (seed,$) ifH,(Iy ...I;,) =y~

It depends: One-round case

e.g., imagine source samples
[=0||W

where W is a uniform (r — 1)-

seed —>€9
bit string.
)@) __) Distinguisher D (seed,Y):

1V T Y T «n (V)
if T[1] @ IV[1] D seed[1] = 0 then

return 1

else return 0

The attack was possible because we have been able /%
to query ~1(Y) ... so what if we can’t?

¢

T

It depends: One-round case

Intuition: If D(seed,Y)

I
cannot query m~1(Y), then

v needs to query T(IV @D
seed —(H seed @ I) on all possible I’s!
-~ - @
Y T Y
> |—> Work needed to distinguish:
2Heo (D) = 27=1 gyeries to 1!

Main observation: Restriction that w~1(Y) is never
qgueried is valid in applications where Y is used as a

secret key!

Sponge-Wma—\
L

seed —>[A

Xi=V > >

Seel

Lemma 1. Output Y is pseudorandom, provided:

1. g, < min{2"", 22,27}

here, q is # queries by A and D combined!

2. A never queries m~1(Y)

Key Lemma— Analysis of next

Only assume

lower bound on l Y I
H (S) :

—> * 0" —>
ST |1 T || T
— z

\\; 4//§x y,

next

Lemma 2. (Y, T) = (U,,0"||U,) for any distinguisher
that makes g,, < min{2H»(S) 27 2¢/2} queries to 7.

Next — Remarks

General distribution on S is necessary, as we may call
next multiple times!

-—> — (7 —> —e (7 —>
L |m T S| |m T
—> —>
& TR)
next next

Next — Remarks (cont’d)

Extra permutation call is necessary!

Attacker just checks
_1 .
sl | |7 yvhethern (Y||T) is
L > in the range of S
A /)

next

Note: Extra cost of additional permutation call can
be mitigated by outputting multiple Y's.

Alternative — Open question

Following variant does not fit into our proof framework, but may be fine

overall.

-

va

ot

>

next

y

o

@*@%

)

VS

This would prevent a double
permutation call when
transitioning refresh -> next!

\ 4

qu

B

51

AN

[Hutchinson, SAC "16] proposes another approach to next, requires modification of lower

bits!

Further application — Sponge-based KDF

source material

) ——_— -| context variable output
IV |. T T | T T | T
— > —> : > » - - > — > —¢

We show it is a good KDF, even when source material is
permutation dependent!

Proof combines sponge extraction lemma + PRF analyses
for keyed sponges [ADMVA15,GPT15,MRV15]

Roadmap of this talk

1. PRNGs: Sponge-based Instantiations

2. Provably-robust sponge-based PRNGs

3. Conclusions and open questions

Permutation-dependence and the seed: Why care?

Typical argument: Real-world
distributions behave nicely!

Possible, but ... it is not easy to characterize
what “real-world distribution” means...

Personal take: If you can add security for cheap,
then why not enable it as an option?

Our seeding is entirely black box — input whitening!

Open Problems 49
222

* Better security

— Premature next? More general class of samplers?
* Concrete bounds

— No issue for large-stage (n = 1600 bits)

e Small state

— What if state is very small (e.g., 128 bits) and
randomness is injected at low rate

— Incorrect proposal in our paper ®
* Assumptions

— Random permutation should make things easier,
except it does not!

Open Problems — Assumptions

Random-permutation assumption problematic
* Possible way out: Public-seed PRPs [Soni-T,
EC'17]
— Standard-model assumption for (seeded)
permutations

e Caveat: Permutation itself requires a seed!
— See Pratik’s talk on Wednesday [not about PRNGs]

Thank you!

