
Backdoors	in	PRGs	and	PRNGs	

Kenny	Paterson	

Information	Security	Group	

@kennyog;	www.isg.rhul.ac.uk/~kp	

Overview	of	this	lecture	

• Motivation	for	considering	backdoors	

•  Backdoors	in	PRGs	
•  Backdoors	in	PRNGs	(PRGs	with	entropy	inputs)	

2	

Motivation	

The	Snowden	revelations	

•  In	2013,	Snowden	revealed	the	extent	
of	the	NSA	mass	surveillance	
programs	
	

•  New	threat	model:	

•  Backdoors,	subversion,	…	
	
	

	

•  Led	to	increased	suspicion	of	the	Dual_EC	pseudorandom	generator	

•  Standardized	by	several	standardization	bodies:	NIST,	ISO,	ANSI,	…	

•  Simple	generator	based	on	two	(specific	and	fixed)	elliptic	curve	points,	P	and	Q.	

•  Biased	and	slow,	so	no	real	incentive	to	use	it.	

•  But	knowledge	of	the	discrete	log	of	P	wrt.	Q	allows	state	recovery	from	generator	
outputs	(Shumov-Ferguson	2007),	so	good	target	for	backdooring.	

4	

Basis	for	an	attack	against	TLS?		

TLS	ECDHE	handshake	(simplified):	

Client	 Server	

client	random	

server	random,	session	ID,	
cert(pk),	aP,	sig	

bP,	Finished	

Finished	

MS	=	PRF(x(abP),	“master	secret”,	client	random,	server	random)	

Checkoway	et	al.	“On	the	Practical	Exploitability	of	Dual	EC	in	TLS	
Implementations”,	USENIX’14	

5	

The	Juniper	incident	

Juniper	Networks	is	a	major	vendor	of	network	security	devices.	

ScreenOS	is	the	Operating	System	in	Juniper’s	Netscreen	VPN	product	family.	

2008:	Juniper	adopt	Dual_EC	in	ScreenOS.	

10/2013:		Juniper	publish	a	knowledge	base	article	explaining	that	ScreenOS	uses	Dual	
EC,	but	“in	a	way	that	should	not	be	vulnerable	to	the	possible	issue	that	has	been	
brought	to	light”.	

•  Custom	Q	instead	of	NIST-standardised	(and	NSA-generated)		Q.	

•  Dual_EC	output	post-processed	by	ANSI	X9.31	generator.	

12/2015:	Juniper	makes	vulnerability	announcement:	

“VPN	Decryption	(CVE-2015-7756)	may	allow	a	knowledgeable	attacker	who	can	monitor	
VPN	traffic	to	decrypt	that	traffic.	[…]	This	issue	affects	ScreenOS	6.2.0r15	through	
6.2.0r18	and	6.3.0r12	through	6.3.0r20.	No	other	Juniper	products	or	versions	of	ScreenOS	
are	affected	by	this	issue.	There	is	no	way	to	detect	that	this	vulnerability	was	exploited”.	

6	

The	Juniper	incident	

2015/2016:	Reverse	engineering	effort	by	Checkoway	et	al.	discovers:	

•  Subtle	scoping	bug	in	code	means	that	Dual_EC	output	is	directly	exposed	as	
ScreenOS	PRNG	output	(instead	of	being	post-processed).	

•  Increased	nonce	size	of	32	bytes	in	Juniper	IKE	implementation	is	ideal	for	recovering	
Dual_EC	state.	

•  Even	though	nonce	follows	DH	value	in	IKE	protocol,	nonce	value	is	generated	before	
DH	value	and	stored	in	a	queue.	

•  Hence,	someone	who	knows	dlogP(Q)	can	recover	(EC)DH	private	value	using	
Dual_EC	backdoor,	and	thence	all	encryption	keys,	from	observing	a	single	IKE	run.	

•  CVE-2015-7756	actually	refers	to	a	change	in	the	Q	value:	it	appears	that	Juniper’s	
custom	Q	value	was	replaced	in	2012,	along	with	test	vectors,	by	persons	unknown.	

•  So	Juniper	(and	possibly	others)	could	passively	break	customers’	IPsec	traffic,	but	
then	lost	the	capability	to	persons	unknown.	

Details	in:	Checkoway	et	al.,	A	Systematic	Analysis	of	the	Juniper	Dual	EC	Incident,		
ACM-CCS	2016.	
7	

Backdoors	in	PRGs	

Backdoors	in	PRGs	

Main	research	question:	
	

	

	

	

	

Two	recent	research	papers	addressing	this:	

•  Dodis-Ganesh-Golovnev-Juels-Ristenpart	(Eurocrypt	2015)	

•  Degabriele-Paterson-Schuldt-Woodage	(Crypto	2016)	
	

	
	
	

To	what	extent	can	provably	secure	
pseudorandom	generators	be	backdoored?	

9	

Pseudorandom	Generators	(PRGs)	

Pseudorandom	generator		

(pp,bk)	setup	1λ	 st	init	pp	

r,	st'	next	st	

Given	a	short	random	seed	as	input,	a	PRG	outputs	
an	arbitrary	long	string	of	pseudorandom	bits		

10	

Forward	Security	for	PRGs	

[]	

Game	FWD(,	q)	

next	st0	 (stq,r10,	…	,rq0)	
q	

setup	

init	

1λ	 (pp,bk)	

pp	 st0	

(pp,r1b,	…	,rqb,stq)	

(r11,	…	,	rq1)	

b’	

{0,1}	 b	

return(b	=	b’)	

Adv(,	q)	=	2|	Pr[FWD	⇒	1]	-	1/2	|	
Advantage	

For	all					:				Adv(,	q)	≤	𝜀	

(q,	𝜀)-FWD	Security	

11	

Backdoored	PRGs	

12	

Let	type-BPRG()	be	game	capturing	a	specific	backdooring	
goal,	and	let	Adv()	denote	the	corresponding	advantage.	

Backdooring	Game	

A	tuple	of	algorithms	PRG’	=	(setup,	init,	next,)	is	a		
(q,	δ,	[type,	𝜀])-FWD-secure	BPRG	if:	
• PRG	=	(setup,	init,	next)	is	a	(q,δ)-FWD-secure	PRG	
• Adv()	≥	𝜀	

(q,	δ,	[type,	𝜀])-FWD-secure	BPRG	

Big	Brother:	

Dodis-Ganesh-Golovnev-Juels-Ristenpart	
(2015)	

•  Consideration	of	various	different	backdooring	goals.	
•  Distinguishing	output	from	random:	type	=	DIST	

•  Prediction	of	past/future	outputs	given	current	output	(random	seek):	
type	=	RSEEK	

•  Prediction	of	current	state:	type	=	NEXT	

•  (In	practice,	BB	would	like	to	recover	initial	state,	not	addressed	by	
Dodis	et	al.)	

•  Equivalence	of	DIST-backdoored	PRGs	and	single-bit	public	key	
encryption	with	pseudorandom	ciphertexts.	
•  So	backdoored	PRGs	are	really	public	key	primitives.	

•  cf.	use	of	ECDLP	to	build	Dual_EC.	

•  Means	that	constructions	will	“look	suspicious”.	

13	

DIST-BPRG	game	

[]	

Game	DIST-BPRG(,q)	

next	st0	 (stq,r10,	…	,rq0)	
q	

setup	

init	

1λ	 (pp,bk)	

pp	 st0	

(bk,r1b,	…	,rqb)	

(r11,	…	,	rq1)	

b’	

{0,1}	 b	

return	(b	=	b’)	

Adv(,	q)	=	2|	Pr[FWD	⇒	1]	-	1/2	|	

Advantage			

•  PRG	=	(setup,	init,	next)	is	(q,δ)-
FWD-secure.	

•  Adv(,	q)		≥		𝜀	

(q,	δ,	[DIST,	𝜀])-FWD-secure	BPRG:	

14	

	Construction	of	bit	encryption	using	a	
	backdoored	PRG	from	[DGGJR15]	

15	

(pp,bk)	setup	1λ	

st	init	pp	

r,	st'	next	st	

(q,	δ,	[DIST,	𝜀])-secure	BPRG		

(stq,r10,	…	,rq0)	

setup	 (pp,bk)	

return(PK	=	pp,	SK	=	bk)	

KGen(1λ):	

1λ	

Enc(PK,b):	

init	PK	 st0	

return(r1b,	…	,rqb)	

[]	next	st0	
q	

(r11,	…	,	rq1)	

Dec(SK,c):	

(SK,c)		 b’	
return(b’)	

PKE	

Theorem:	
The	construction	produces	a	
single-bit	PKE	scheme	that	is	𝜀-
correct	and	(q,δ)-IND-$CPA	
secure.	

Further	results	in	[DGGJR15]	

•  Various	constructions	for	backdoored	PRGs	for	the	different	
goals,	DIST,	RSEEK,	NEXT.	

•  Careful	study	of	“immunisation”	of	backdoored	PRGs	to	
remove	backdoors.	

•  Highly	relevant	in	light	of	the	Juniper	incident!	

16	

•  Can	a	BPRG	be	simultaneously	forward	secure	and	allow	
recovery	of	past	outputs	via	backdooring?	

•  Can	we	achieve	stronger	backdooring	notions	for	PRGs,	like	
recovery	of	initial	state?	

Open	Problems:	

FIRST-BPRG	game	from	[DPSW16]	

[]	

Game	FIRST-BPRG(,q,i)	

next	st0	 (stq,r1,	…	,rq)	
q	

setup	

init	

1λ	 (pp,bk)	

pp	 st0	

(bk,ri)	 st’	

return	(st0	=	st’)	

Adv(,q	,i)	=	Pr[FIRST-BPRG⇒	1]		

Advantage			

•  PRG	=	(setup,	init,	next)	is	(q,δ)-
FWD-secure.	

•  Adv(,q,i)		≥		𝜀		for	every	i.	

(q,	δ,	[FIRST,	𝜀])-FWD-secure	BPRG:	

FIRST	is	a	powerful	backdooring	notion:	recovery	of	initial	state	st0	from	any	
output	ri	allows	reconstruction	of	all	past	and	future	outputs!	

17	

Building	a	FIRST-BPRG	[DPSW16]	

•  A	forward	secure	PRG	=	(setup’,	init’,	next’)	

•  An	IND$-CPA	secure	reverse-rerandomizable	encryption	scheme		
PKE	=	(keygen,	enc,	rerand,	rev-rerand,	dec)	

18	

IND$-CPA	

Ciphertexts	are	indistinguishable	from	random	strings	

Rerandomizable	

For	all	pk,	m,	r’	:		
{	enc(pk,	m;	r)		|		r	←	R	}		≈		{	rerand(enc(pk,	m;	r’),	r)		|		r	←	R	}		

Reverse-rerandomizable	

For	all	pk,	m,	r,	r’	:		
enc(pk,	m;	r)		=		rev-rerand(rand(enc(pk,	m;	r),	r’),	r’)	

A	FIRST-BPRG	construction	[DPSW16]	

19	

setup	

(pk,	sk)	←	keygen	
(pp’,	⊥)	←	setup’	
pp	←	(pp’,	pk)	
bk	←	sk	
return	(pp,	bk)	

init	

state:		 st0	 c0	

st0	←	init’(pp’)	

c0	←	enc(pk,	st0)	

next	

st	 c	

	(r,	st’)←	next’(st)	

c	

output	c’←	rerand(c,	r)	

st'	 c’	

Using	bk,	backdoor	adv	can:	
•  Decrypt	c	to	obtain	st0;	
•  Run	PRG	to	generate	the	

r	values;	
•  Reverse	the	

rerandomizations	of	c	to	
obtain	c0.		

•  (Run	the	PRG	forward	to	
compute	all	outputs.)	

PRG	=	(setup,	init,	next)	is	a	(q,	δ,	(FIRST,	1))-FWD-secure	BPRG.	
This	follows	from:	
	
• Forward	security	of	PRG’	=	(setup’,	init’,	next’)	
• IND$-CPA	security	and	rerandomization	security	of		
PKE	=	(keygen,	enc,	rerand,	rev-rerand,	dec)	

• Ability	to	recover	r	values	and	reverse	the	rerandomizations	

Backdoors	in	PRNGs	

PRNGs	(sometimes:	PRNGs	with	input)	

21	

(pp,	bk)	

PRNG	

setup	1λ	 st	init	pp	

r,	st'	next	st	

A	PRG	that	allows	state	updates	with	
inputs	from	an	entropy	source	

refresh	(pp,	st,	I)	 st'	

Input	from	entropy	source	

Modeling	entropy	inputs:	The	distribution	
sampler	[DPRVW13]	

22	

State:	σ	

										(σ’,				I,				ɣ,				z)	σ	

Updated	state	

Input	to	PRNG	

Entropy	estimate	for	input	

Side	information	regarding	input	

Entropy	requirement:	
	 	H∞(Ii		|		I1,	…	,	Ii-1,	Ii+1,	…	Iq,	z1,	…	,	zq,	ɣ1,	…	,	ɣq)	≥	ɣi	

Distribution	
sampler	

Robustness	for	PRNGs	

23	

Game	ROB(,				,	ɣ*)	

setup	

init	

1λ	 (pp,	bk)	

pp	 st	

	pp	 b’	

{0,1}	 b	

return	(b	=	b’)	

∅	 σ	
∞	 c	
GET,	SET,	REF,	ROR	

Adv(,				,	ɣ*)	:=		
2|	Pr[ROB(,				,	ɣ*)	⇒	1]	-	1/2	|	

Advantage	

GET()	

return(st)	
0	 c	

SET(st')	

st’	 st	
0	 c	

REF()	

σ	

refresh	

(σ,	l,	ɣ,	z)	

(pp,	st,	l)	 st	

c	+	ɣ	 c		

return(ɣ,	z)	

ROR()	

(pp,st)	

0	 c		
if	c	<	ɣ*	then	

next	

return(r0)	
	else		
					return(rb)	

r0,	st	

r1	

Backdooring	models	for	PRNGs	[DPSW16]	

We	consider	a	PRNG	which	we																				according	to	a	refresh	pattern	rp,	defining	a	
sequence	of	next	and	refresh	calls.								

24	

evolve	

Game	ST-BPRNG(,			,	i,	j,	rp)	

setup	

init	

1λ	 (pp,bk)	

pp	 st0	

sj’	

return(sj	=	sj’)	

evolve	(pp,st0,rp)	

(r1,st1,	…	,rq,stq)	

(bk,ri,i,j,rp)		

Game	OUT-BPRNG(,			,	i,	j,	rp)	

setup	

init	

1λ	 (pp,bk)	

pp	 st0	

rj’	

return(rj	=	rj’)	

evolve	(pp,st0,rp)	

(r1,st1,	…	,rq,stq)	

(bk,ri,i,j,rp)		

A	simple	backdoored	PRNG	[DPSW16]	

•  Dodis	et	al.	(2013)	present	a	construction	of	a	provably	robust	
PRNG	

•  Crucially,	the	output	is	produced	by	using	a	forward	secure	
PRG	in-between	refreshes.		

•  Simply	replace	this	with	a	BPRG	(and	tweak	the	entropy	
accumulation	process).	

•  Backdoor	attacker	can	then	compromise	the	PRNG	in	the	
period	between	refreshes.	

•  But	the	PRNG	is	still	robust	against	a	normal	attacker.	

•  Challenge:	Can	we	design	a	backdoored	PRNG	in	which	the	
backdoor	attacker	can	move	past	refreshes?	

	

25	

Building	blocks	
•  A	robust	PRNG’	=(setup’,	init’,	refresh’,	next’)	

•  An	IND$-CPA	secure	rerandomizable	encryption	scheme		
PKE	=	(keygen,	enc,	rerand,	dec)	

Construction	of	a	backdoored	PRNG	[DPSW16]	

26	

setup	

(pk,	sk)	←	keygen	
(pp’,	⊥)	←	setup’	
pp	←	(pp’,	pk)	
bk	←	sk	
return	(pp,	bk)	

init	

state:		 st0	 c0	

st0	←	init’(pp’)	

c0	←	enc(pk,	st0)	

Construction	of	a	backdoored	PRNG	[DPSW16]	

27	

refresh	

st	 c1	 c2	 c3	 c4	c1	 c2	 c3	c1’	 c4	

deleted	

enc(pk,	st’)→c1’	

st’←	refresh’(st,	I)	

st’	

next	

st	 c1	 c2	 c3	 c4	

output	1:	
r	=	c1	||	…	||	c4	

output	2:	 use	next’	to	generate	r	
based	on	st	

st'	 c1’	 c2’	 c3’	 c4’	

rerandomize	ci	
and	update	st	

Recomputable	by	backdoor	
adversary		if	state	is	recovered	

from	output	1	

Full	construction	[DPSW16]	

28	

Robustness	of	PRNG	=	(setup,	init,	refresh,	next)	follows	from:	
	
•  Robustness	of	PRG’	=	(setup’,	init’,	refresh’,	next’)	
•  IND$-CPA	security	and	rerandomizability	of	PKE	=	(keygen,	

enc,	rerand,	dec)	
	
Advantage	of	Big	Brother	in	the	OUT-BPRNG	game	is	approx.	
¼	for	i,j	values	in	‘range’	and	0	otherwise.	

Impossibility	result	[DPSW16]	

Our	backdoored	PRNG	construction	crucially	relies	on	storing	
snapshots	of	the	state,	and	the	degree	of	backdooring	is	limited	
by	the	size	of	the	state	space.	
	

We	show	that	this	is	inherent	to	a	class	of	distribution	samplers:	

29	

For	any	𝜀-robust	PRNG,	any	well-behaved	distribution	sampler,	any	
sequence	of	queries,	any	legitimate	subsequence	f,	any	j	and	k:	
	

	 	H∞(Sf(j)		|		Rf(j)	+	k	,	pp)		≥		(j	+	1)	/	2	⋅	log(1/𝜀)		-		min(l,	n)	
	
where	n	is	the	size	of	the	state,	and	l	is	the	output	size.		

Concluding	remarks	

Concluding	remarks	

The	bad	news:	

•  Provably	forward-secure	PRGs	can	be	backdoored	in	the	
strongest	sense	possible:	initial	state	recovery	from	any	single	
output.	

•  Provably	robust	PRNGs	can	be	backdoored	to	allow	Big	Brother	
to	recover	previous	output	values,	even	if	the	PRNG	is	refreshed.	

The	slightly	better	news:	

•  BPRGs	must	look	like	public	key	primitives.	

•  Robust	PRNGs	provide	some	resistance	against	backdooring.	

Future	work:	

•  Stronger	impossibility	results,	immunizers	for	BPRNGs,	
additional	constructions	of	BPRGs	and	BPRNGs	with	more	
compact	state	or	stronger	backdooring,…	

31	

