
Practical white-box topics

design and attacks – part 1

Joppe W. Bos

White-Box Cryptography and Obfuscation

August 14, 2016, Santa-Barbara, California, USA

1.

• Comply with current
standards / protocols required
 Focus is on AES / DES

Standardized
crypto

• Crypto designed to aid certain
WB properties“New” crypto

What to White-Box?

2.

Original use-case for white-box crypto is

digital right management.

For example: streaming content, protecting DVD’s etc

Where is this used in practice?

3.

Original use-case for white-box crypto is

digital right management.

For example: streaming content, protecting DVD’s etc

Where is this used in practice?

4.

Source: Business Insider

Recent trend

Use Host Card Emulation (HCE) to communicate

using Near Field Communication (NFC)

 Replace the secure element with software.

Protection of the cryptographic key? How?

White-box implementation!

• 2014: VISA + Mastercard support HCE

• [Berg Insight]: 86% of the Point of Sale devices in North America and

78% in Europe will support NFC by 2017.

• [IHS research]: By 2018, 2/3 of all shipped phones will support NFC.

•  the protocols used need to use (and store!) AES / DES keys

 need to white-box standardized crypto.

Huge demand for practical + secure white-box

5.

Recall: White box model

6.

Encryption /

Decryption

Plaintext / Ciphertext Ciphertext / Plaintext

• Static analysis

• Dynamic analysis

• Inspect memory

• Inject faults

• Alter implementation

Adversary owns the device running the software. Powerful capabilities

 has full access to the source code  perform static analysis

 inspect and alter the memory used  alter intermediate results

Security of WB solutions - Theory

7.

White box can be seen as a form of code obfuscation

• It is known that obfuscation of any program is impossible

Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, Yang. On the (im)possibility of obfuscating programs. In CRYPTO 2001

• Unknown if a (sub)family of white-box functions can be obfuscated

• If secure WB solution exists then this is protected (by definition!) to all current

and future side-channel and fault attacks!

Security of WB solutions - Theory

8.

White box can be seen as a form of code obfuscation

• It is known that obfuscation of any program is impossible

Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, Yang. On the (im)possibility of obfuscating programs. In CRYPTO 2001

• Unknown if a (sub)family of white-box functions can be obfuscated

• If secure WB solution exists then this is protected (by definition!) to all current

and future side-channel and fault attacks!

Practice

 Only results known for symmetric crypto

(all academic designs of standard crypto broken)

 Convert algorithms to sequence of LUTs

 Embed the secret key in the LUTs

 Obfuscate the LUTs by using encodings

9.

• The key addition and S-box operations are merged into a single operation

(8 bit → 8 bit table → 256 byte)

• To simplify: we omit ShiftRow operation

• Corresponds to renumbering of indices

• The MixColumn operation can be split into four

byte-to-32-bit (8 bit → 32 bit table → 1024 byte) operations:

• We can now implement a round by only using the following 2 types of lookup

tables:

)()(,,,,, jijijijiji aTkaSboxb 

)()()()(,3,33,2,22,1,11,0,00 jjjjjjjjj aTMaTMaTMaTMc 

AES with look-up tables: example, Chow

𝑀𝑖𝑇𝑖,𝑗8 8 32 ⊕8 4

• Since S-boxes and matrix 𝑀 are known, the key can easily be extracted from

the lookup tables.

• Solution: obfuscating lookup tables by encoding their input and output.

AES (Chow) with look-up tables + obfuscation

10.

• Since S-boxes and matrix 𝑀 are known, the key can easily be extracted from

the lookup tables.

• Solution: obfuscating lookup tables by encoding their input and output.

• First, we apply linear encodings:

• 𝐴𝑖: random 8-bit linear mapping

• 𝑀𝐵: random 32-bit linear mapping

AES (Chow) with look-up tables + obfuscation

𝐴𝑖 𝑀𝐵 ⋅ 𝑀𝑖𝑇𝑖,𝑗8 8 8 32jii aA ,

1 

jcMB ⊕8 4

11.

• Since S-boxes and matrix 𝑀 are known, the key can easily be extracted from

the lookup tables.

• Solution: obfuscating lookup tables by encoding their input and output.

• First, we apply linear encodings:

• 𝐴𝑖: random 8-bit linear mapping

• 𝑀𝐵: random 32-bit linear mapping

AES (Chow) with look-up tables + obfuscation

• Matrix 𝑀𝐵 is removed from the computed output columns.

Implemented in the same way as the MixColumn operations

• Merge the 𝑀𝐵𝑖-tables by the linear encodings used in the next round.

)()()()()(3

1

32

1

21

1

10

1

0

1 xMBxMBxMBxMBxMB  

𝐴𝑖 𝑀𝐵 ⋅ 𝑀𝑖𝑇𝑖,𝑗8 8 8 32jii aA ,

1 

jcMB ⊕8 4

12.

Obfuscation, obfuscation, obfuscation

13.

• In addition to the linear encodings, also add non-linear encodings 𝑓.

jiiii aAff ,

1

,1,0),(

jiiii cAff ,

1

,1,0),(

Size of implementation: ≈ 700 kB

Chow, Eisen, Johnson, van Oorschot.

White-box cryptography and an AES

implementation. In SAC 2002.

𝐴𝑖 𝑀𝐵 ⋅ 𝑀𝑖𝑇𝑖,𝑗8 8

… …

4

4

8x4

⊕
4

4 4

8

𝑀𝐵𝑖
−1

𝐴0

𝐴1

𝐴2

𝐴3

8

8

8

4

4

8x4

⊕
4

4 4

White box crypto - practice

14.

In practice the white box is the most essential but

a small part of the entire software implementation

 Strong code obfuscation

 Binary is “glued” to the environment

 Prevent code-lifting

 Support for traitor tracing

 Mechanism for frequent updating

More details see the invited talk at EC 2016

Engineering Code Obfuscation by

Christian Collberg

White-Boxed
implementation

White-Box

Code
obfuscation

Anti-
Debugging
+ platform

binding

Effort and expertise required

Previous effort

Previous WB attacks were WB specific which means knowing

• the encodings

• which cipher operations are implemented by

• which (network of) lookup tables

Attack

1. time-consuming reverse-engineering of the code

2. identify which WB scheme is used + target the correct LUTs

3. apply an algebraic attack

15.

Effort and expertise required

Previous effort

Previous WB attacks were WB specific which means knowing

• the encodings

• which cipher operations are implemented by

• which (network of) lookup tables

Attack

1. time-consuming reverse-engineering of the code

2. identify which WB scheme is used + target the correct LUTs

3. apply an algebraic attack

Our approach

Assess the security of a WB implementation

 Automatically and very simply (see CHES challenge)

 Without knowledge of any implementation choices

 only the algorithm itself

 Ignores all (attempts) at code-obfuscation

16.

• Academic attacks are on open design

• In practice: what you get is a binary blob

Idea: create software traces using dynamic binary instrumentation tools

( visual representation  use traces to find correlation)

• Record all instructions and memory accesses.

Examples of the tools we extended / modified
• Intel PIN (x86, x86-64, Linux, Windows, Wine/Linux)

• Valgrind (idem+ARM, Android)

Tracing binaries

17.

Trace visualization

Based on Ptra, an unreleased Quarkslab tool presented at SSTIC 2014
18.

Visual crypto identification: code

19.

9x4

Visual crypto identification: code?

20.

Visual crypto identification: code? data!

21.

1+15

Visual crypto identification: code? data?

22.

Visual crypto identification: stack!

23.

1+15

Differential Power Analysis and friends

24.

Very powerful grey box attack!

Requirements

• known input or known output

• ability to trace power consumption

(or EM radiations, or …)

P. C. Kocher, J. Jaffe, and B. Jun: Differential power analysis.

CRYPTO'99

Port the white-box to a smartcard and measure power consumption

Differential Computation Analysis

25.

Port the white-box to a smartcard and measure power consumption

Make pseudo power traces from our software execution traces

 this are lists of memory accesses / data + stack writes / …

E.g. build a trace of all 8-bit data reads:

→ 256 possible discrete values

Differential Computation Analysis

26.

Differential Computation Analysis

27.

256 possible discrete values but bit values dominated by the MSB

→ Build Hamming weight traces?

→ 8 possible discrete values

That works but we can do better…

recall: Hamming weight was a hardware model for combined bit leaks

Differential Computation Analysis

28.

Each bit of those bytes is equally important

address bits represent a different way to partition the look-up tables

→ Serialize bytes in a succession of bits

→ 2 possible discrete values: 0's and 1's

29. Image source: Brightsight

DCA: DPA on software traces

HW analogy: this is like probing each bus-line individually without any error

Results

WB implementation Algorithm #traces

Wyseur challenge, 2007 DES (Chow+) 65

Hack.lu challenge, 2009 AES (Chow) 16 (no encodings)

SSTIC challenge, 2012 DES 16 (no encodings)

Klinec implementation, 2013 AES (Karroumi, dual ciphers) 2000  500

WB implementations should not leak any side-channel information

(by definition of the WB attack model): let’s check!

Intuition why this works:

Encodings do not sufficiently hide correlations when the correct key is used.

See also: P. Sasdrich, A. Moradi, and T. Güneysu. White-box cryptography in the gray box - a hardware

implementation and its side channels. In FSE 2016.

30.

Academic remedies

• Cannot rely on random data in the white-box attack model

• Use static random data within the white-box itself?

• DCA might fail when using large encodings  either impractically large tables or simplified

schemes  easy to break with algebraic attacks

• Use ideas from threshold implementation?

• masking scheme based on secret sharing and multi-party computation
S. Nikova, C. Rechberger, and V. Rijmen. Threshold implementations against side-channel attacks and glitches. In Information

and Communications Security, 2006.

Practical remedy

• strengthen other measures
• anti-debug / detect DBI frameworks, code-obfuscation (?),

integrity checks, platform binding, etc

Countermeasures?

31.

32.

https://github.com/SideChannelMarvels

Any help to complete our collection

of open whitebox challenges and

attacks or to improve our tools is

highly appreciated!

• Software-only solutions are becoming more popular
• white-box crypto

• Besides traditional (DRM) also other use-cases (HCE) such as payment, transit, …

• Level of security / maturity of many (all?) WB schemes is questionable
• Open problem to construct asymmetric WB crypto

• Industry keeps design secret

• DCA is an automated attack (no expertise needed!)
• Counterpart of the SCA from the crypto HW community

• What if DCA fails, can we do better? What about software FA, CPA, higher-order

attacks etc?
• See the next presentation!

Riscure was the first show DFA works as well, see our online repo for an implementation

Conclusions and future work

33.

• Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen:

Differential Computation Analysis: Hiding your White-Box Designs is Not

Enough. CHES 2016.

• Eloi Sanfelix Gonzalez, Cristofaro Mune, Job de Haas: Unboxing the

White-Box: Practical Attacks Against Obfuscated Ciphers. Black Hat

Europe 2015.

References

34.

