e D>

Joppe W. Bos
yptography and Obfuscation g
‘ Santa—Barbara California, Uéﬁa

SECURE CONNECTIONS
FOR A SMARTER WORLD

What to White-Box?

- « Comply with current
Standardized standards / protocols required

crypto > Focus is on AES / DES

* Crypto designed to aid certain
“New” Crypto WB properties

. N

Where iIs this used in practice?

Original use-case for white-box crypto is
digital right management.

For example: streaming content, protecting DVD’s etc

Where is this used in practice?

Original use-case for white-box crypto is
digital right management.

For example: streaming content, protecting DVD’s etc

How Host Card Emulation Works

Card Emulation With A Secure
Element

Host Card Emulation

Recent trend

ot cL —yT Use Host Card Emulation (HCE) to communicate
using Near Field Communication (NFC)

. e - Replace the secure element with software.

NFC Payment Terminal TS ————— Protection of the cryptographic key? How?

_ _ White-box implementation!
Source: Business Insider

(™|
i |

Huge demand for practical + secure white-box
2014: VISA + Mastercard support HCE

[Berg Insight]: 86% of the Point of Sale devices in North America and
78% in Europe will support NFC by 2017.

[IHS research]: By 2018, 2/3 of all shipped phones will support NFC.

—> the protocols used need to use (and store!) AES / DES keys
- need to white-box standardized crypto.

(™|
i |

Recall: White box model
4 g) N\

Plaintext / Ciphertext i [Encryption/ |: Ciphertext/ Plaintext
: Decryption

>

A L3

Static analysis ettt 4
Dynamic analysis
Inspect memory

Inject faults
Alter implementation

Adversary owns the device running the software. Powerful capabilities

v" has full access to the source code v' perform static analysis
v inspect and alter the memory used v alter intermediate results

™|
i |

Security of WB solutions - Theory

White box can be seen as a form of code obfuscation
« |tis known that obfuscation of any program is impossible

Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, Yang. On the (im)possibility of obfuscating programs. In CRYPTO 2001

« Unknown if a (sub)family of white-box functions can be obfuscated

» If secure WB solution exists then this is protected (by definition!) to all current
and future side-channel and fault attacks!

\'
(™|
i |

Security of WB solutions - Theory

White box can be seen as a form of code obfuscation
« |tis known that obfuscation of any program is impossible

Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, Yang. On the (im)possibility of obfuscating programs. In CRYPTO 2001

« Unknown if a (sub)family of white-box functions can be obfuscated
» If secure WB solution exists then this is protected (by definition!) to all current
and future side-channel and fault attacks!

Practice
» Only results known for symmetric crypto
(all academic designs of standard crypto broken)
= Convert algorithms to sequence of LUTs
» Embed the secret key in the LUTs
= Obfuscate the LUTs by using encodings

AES with look-up tables: example, Chow

The key addition and S-box operations are merged into a single operation
(8 bit — 8 bit table — 256 byte) b, , = Sbox(a, ; ®k,) =T, ,(a)

To simplify: we omit ShiftRow operation
« Corresponds to renumbering of indices

The MixColumn operation can be split into four
byte-to-32-bit (8 bit — 32 bit table — 1024 byte) operations:

C; = MOTO,j(aO,j)@MlTl,j(al,j)®M2T2,j(a2,j)® M3T3,j(a3,j)

We can now implement a round by only using the following 2 types of lookup
tables:

et Mif=2 2D

(™|
i |

AES (Chow) with look-up tables + obfuscation

Since S-boxes and matrix M are known, the key can easily be extracted from
the lookup tables.

Solution: obfuscating lookup tables by encoding their input and output.

10.

(™|
i |

AES (Chow) with look-up tables + obfuscation

Since S-boxes and matrix M are known, the key can easily be extracted from
the lookup tables.

Solution: obfuscating lookup tables by encoding their input and output.

First, we apply linear encodings:
* A;: random 8-bit linear mapping
 MB: random 32-bit linear mapping

(™|
i |

11.

AES (Chow) with look-up tables + obfuscation

Since S-boxes and matrix M are known, the key can easily be extracted from
the lookup tables.

Solution: obfuscating lookup tables by encoding their input and output.

First, we apply linear encodings:
* A;: random 8-bit linear mapping
 MB: random 32-bit linear mapping

Matrix MB is removed from the computed output columns.
Implemented in the same way as the MixColumn operations

MB_l(X) = MBo_l(Xo) ® MBl_l(Xl) ® MBz_l(Xz) ® MBs_l(Xs)

Merge the MB;-tables by the linear encodings used in the next round.

(™|
i |

12.

Obfuscation, obfuscation, obfuscation

In addition to the linear encodings, also add non-linear encodings f.

4 8x4 4. :
(fo,i’fl,i)Ai_l'ai,j E> 45::‘.:41' 1 T; is"|MB ML‘E E> ;’TII @Iﬁ’

| 7142 >
4! I:
8’ A3 li Chow, Eisen, Johnson, van Oorschot.

White-box cryptography and an AES
implementation. In SAC 2002.

Size of implementation: = 700 kB

(™|
i |

13.

White box crypto - practice

In practice the white box is the most essential but
a small part of the entire software implementation

Anti-

Debuggin .
+ plat%grn? = Strong code obfuscation
Code binding

~hfuscation = Binary is “glued” to the environment
‘ - = Prevent code-lifting
= Support for traitor tracing

= Mechanism for frequent updating

More details see the invited talk at EC 2016
Engineering Code Obfuscation by
Christian Collberg

<~

White-Boxed
implementation

(™|
i |

14.

Effort and expertise required

Previous effort
Previous WB attacks were WB specific which means knowing
» the encodings
» which cipher operations are implemented by
» which (network of) lookup tables

Attack

1. time-consuming reverse-engineering of the code
2. identify which WB scheme is used + target the correct LUTs
3. apply an algebraic attack

15.

(™|

i |

Effort and expertise required

16.

Previous effort
Previous WB attacks were WB specific which means knowing
» the encodings
» which cipher operations are implemented by
» which (network of) lookup tables

Attack

1. time-consuming reverse-engineering of the code
2. identify which WB scheme is used + target the correct LUTs
3. apply an algebraic attack

Our approach
Assess the security of a WB implementation
v Automatically and very simply (see CHES challenge)
v Without knowledge of any implementation choices
—> only the algorithm itself
v" Ignores all (attempts) at code-obfuscation

(™|

i |

Tracing binaries

Academic attacks are on open design m
i

In practice: what you get is a binary blob

|ldea: create software traces using dynamic binary instrumentation tools

(= visual representation - use traces to find correlation)

Record all instructions and memory accesses.

—_—
-

Valgrind

Examples of the tools we extended / modified
* Intel PIN (x86, x86-64, Linux, Windows, Wine/Linux)
« Valgrind (idem+ARM, Android)

17.

Trace visualization

code stack data

§ instruction
i
S mem read
I:‘: : mem write
fl.-&,
= IR] mem r+w
=1 B
o N
X)
TN
ey M1
"t{ i
LA " i
(I
v i.!:-l é : II
TN \‘: !
R
Fou :a‘; s]
N

>

memory addresses

18.
Based on Ptra, an unreleased Quarkslab tool presented at SSTIC 2014

(™|

i |

Visual crypto identification: code

mr e

/

9x4

mjlllllllllllllllllfllllllllllllIlllf{

r

19.

it

o

Visual crypto identification: code?

20.

Visual crypto identification: code? data!

21.

Visual crypto identification: code? data?

22.

Visual crypto

23.

Identification: stack!

Differential Power Analysis and friends

P. C. Kocher, J. Jaffe, and B. Jun: Differential power analysis.
CRYPTO'99

For example in AES: SubBytes(p & «)

N
_/

24.

Very powerful grey box attack!

Requirements

* known input or known output
 ability to trace power consumption

Key Expansion

A

AddRoundKey

I

R
I N —
SubByvtes SubBytes
------- ® ,
ShiftRows ShiftRows
Y
MixColumns
L y
AddRoundKey AddRoundKey
L L

(or EM radiations, or ...)

(™|
i |

Differential Computation Analysis

Port the white-box to a smartcard and measure power consumption

25.

Differential Computation Analysis

A aa A
W VAW, O CA C C o O v C C VAW w C

Make pseudo power traces from our software execution traces
—> this are lists of memory accesses / data + stack writes / ...

E.g. build a trace of all 8-bit data reads:

*10 trace 0
251

— 256 possible discrete values
il
26. y

Differential Computation Analysis

256 possible discrete values but bit values dominated by the MSB

— Build Hamming weight traces?

]

37060 070 33000 070 120 140 160 180

— 8 possible discrete values
That works but we can do better...

recall: Hamming weight was a hardware model for combined bit leaks

27.

Differential Computation Analysis

Each bit of those bytes is equally important
address bits represent a different way to partition the look-up tables

— Serialize bytes in a succession of bits

*1E-1 o ~ . - - trace 0

—
—
—
—
o
e

O S kW O 00 WD
—
—
—
]
—
]

10 15 20 25 10 35 40 " 45 - 55 60 65

(=1
i

— 2 possible discrete values: 0's and 1's

A ¥ 4
28. 4\

DCA: DPA on software traces

HW analogy: this is like probing each bus-line individually without any error

29. Image source: Brightsight

Results

WB implementations should not leak any side-channel information
(by definition of the WB attack model): let’'s check!

Wyseur challenge, 2007 DES (Chow+) 65
Hack.lu challenge, 2009 AES (Chow) 16 (no encodings)
SSTIC challenge, 2012 DES 16 (no encodings)

Klinec implementation, 2013 AES (Karroumi, dual ciphers) 2000 - 500

Intuition why this works:
Encodings do not sufficiently hide correlations when the correct key is used.

See also: P. Sasdrich, A. Moradi, and T. Guneysu. White-box cryptography in the gray box - a hardware
implementation and its side channels. In FSE 2016. \

30. y

Countermeasures?

Academic remedies
Cannot rely on random data in the white-box attack model
Use static random data within the white-box itself?

DCA might fail when using large encodings - either impractically large tables or simplified
schemes - easy to break with algebraic attacks

Use ideas from threshold implementation?

« masking scheme based on secret sharing and multi-party computation

S. Nikova, C. Rechberger, and V. Rijmen. Threshold implementations against side-channel attacks and glitches. In Information
and Communications Security, 2006.

Practical remedy

- strengthen other measures

« anti-debug / detect DBI frameworks, code-obfuscation (?),
integrity checks, platform binding, etc

31.

Side-Channel Marvels

SCA-related projects

https://github.com/SideChannelMarvels

Any help to complete our collection
of open whitebox challenges and
attacks or to improve our tools is
highly appreciated!

32.

Deadpool

Repository of various public white-box cryptographic implementations and their practical
attacks.

C 25

Updated 10 days ago

Tracer C++ 25
Set of Dynamic Binary Instrumentation and visualization tools for execution traces.

Updated on Apr 24

JeanGrey * 0

A tool to perform differential fault analysis attacks (DFA).

Python

Updated on Apr 18

Orka

Repository of the official Docker image for SideChannelMarvels.

Updated on Apr 14

Daredevil

C++ 10
A tool to perform (higher-order) correlation power analysis attacks (CPA).

Updated on Apr 11

bs

p7

po

P4

Conclusions and future work

33.

Software-only solutions are becoming more popular
» white-box crypto

Besides traditional (DRM) also other use-cases (HCE) such as payment, transit, ...

Level of security / maturity of many (all?) WB schemes is questionable
« Open problem to construct asymmetric WB crypto
» Industry keeps design secret

DCA is an automated attack (no expertise needed!)
« Counterpart of the SCA from the crypto HW community

What if DCA fails, can we do better? What about software FA, CPA, higher-order

attacks etc?
» See the next presentation!
Riscure was the first show DFA works as well, see our online repo for an implementation

A 4
4\

References

34.

Joppe W. Bos, Charles Hubain, Wil Michiels, and Philippe Teuwen:

Differential Computation Analysis: Hiding your White-Box Designs is Not
Enough. CHES 2016.

Eloi Sanfelix Gonzalez, Cristofaro Mune, Job de Haas: Unboxing the

White-Box: Practical Attacks Against Obfuscated Ciphers. Black Hat
Europe 2015.

SECURE CONNECTIONS
FOR A SMARTER WORLD

