
From Trivial Composition to Full Verification
and an Application to Masking in Hardware

Gaëtan Cassiers, François-Xavier Standaert

UCLouvain (Belgium)

VeriSiCC Seminar, Paris, France, September 2019

Side-Channel Analysis

Side-Channel Analysis

Side-Channel Analysis

Side-Channel Analysis

Side-Channel Analysis

Side-Channel Analysis

Masking (e.g., Boolean 𝑥 = 𝑥0 + 𝑥1 +⋯+ 𝑥𝑑)

Noisy leakages security:

Goal (ideally):

𝑁 ∝ 𝑐

MI(𝑋;𝑳)

MI 𝑋; 𝑳 < MI 𝑋𝑖; 𝐿𝑖
𝑑

Masking (e.g., Boolean 𝑥 = 𝑥0 + 𝑥1 +⋯+ 𝑥𝑑)

Noisy leakages security:

Goal (ideally):

𝑁 ∝ 𝑐

MI(𝑋;𝑳)

MI 𝑋; 𝑳 < MI 𝑋𝑖; 𝐿𝑖
𝑑

Bounded moment security:

ෑ

𝑖1,𝑖2,…,𝑖𝑑−1

𝐿𝑖 𝑋

(𝑑-1)th order statistical moment (ideally)

Bounded moment security:

ෑ

𝑖1,𝑖2,…,𝑖𝑑−1

𝐿𝑖 𝑋

(𝑑-1)th order statistical moment (ideally)

Masking (e.g., Boolean 𝑥 = 𝑥0 + 𝑥1 +⋯+ 𝑥𝑑)

Noisy leakages security:

Goal (ideally):

𝑁 ∝ 𝑐

MI(𝑋;𝑳)

MI 𝑋; 𝑳 < MI 𝑋𝑖; 𝐿𝑖
𝑑

Probing security:

Sets of (𝑑-1) probes are of 𝑋 (ideally)

𝑥 = 𝑥0 + 𝑥1 +⋯+ 𝑥𝑑

Security reductions

n
o

is
y

le
ak

ag
es

b
o

u
n

d
ed

m
o

m
en

t
p

ro
b

in
g

a
b

st
ra

ct
-q

u
a

lit
a

ti
ve

p
hy

si
ca

l-
q

u
a

lit
a

ti
ve

p
hy

si
ca

l-
q

u
a

n
ti

ta
ti

ve

[Barthe et al.,
Eurocrypt 2017]

[Duc et al.,
Eurocrypt 2014]

𝑥 = 𝑥0 + 𝑥1 +⋯+ 𝑥𝑑

What can go wrong? (e.g., when computing 𝑎. 𝑏)

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

⇒

𝑐1
𝑐2
𝑐3

Example: probing 𝑐1 = 𝑎1. 𝑏1 + 𝑏2 + 𝑏3
reveals information on 𝑏 (when 𝑐1 = 1)

Issue #1. Lack of randomness (can break the independence assumption)

What can go wrong? (e.g., when computing 𝑎. 𝑏)

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+

0 𝑟1 𝑟2
𝑟2 0 𝑟3
𝑟2 𝑟3 0

⇒

𝑐1
𝑐2
𝑐3

Issue #1. Lack of randomness (can break the independence assumption)

• mitigated by adding
«refreshing gadgets »
• can be analyzed in
the probing model

• mitigated by adding
«refreshing gadgets »
• can be analyzed in
the probing model

What can go wrong? (e.g., when computing 𝑎. 𝑏)

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+

0 𝑟1 𝑟2
𝑟2 0 𝑟3
𝑟2 𝑟3 0

⇒

𝑐1
𝑐2
𝑐3

Issue #1. Lack of randomness (can break the independence assumption)

Example: glitches (transcient values)
« re-combine » the shares such that:

(detected in the bounded moment model)

𝐿𝑖 = 𝛿(𝑥1 ∙ 𝑥2 ∙ 𝑥3)

Issue #2. Physical defaults
(can break the independence assumption)

• mitigated by adding
«refreshing gadgets »
• can be analyzed in
the probing model

What can go wrong? (e.g., when computing 𝑎. 𝑏)

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+

0 𝑟1 𝑟2
𝑟2 0 𝑟3
𝑟2 𝑟3 0

⇒

𝑐1
𝑐2
𝑐3

Issue #1. Lack of randomness (can break the independence assumption)

• mitigated by adding a « non-
completeness » property
[≈ Theshold Implementations]

• abstract property: can be
analyzed in the probing model!

Issue #2. Physical defaults
(can break the independence assumption)

Technical challenge: scalability

𝒒-probing security [ISW, 2004]:
any 𝑞-tuple of shares in the
protected circuit is independent
of any sensitive variable

Technical challenge: scalability

𝒒-probing security [ISW, 2004]:
any 𝑞-tuple of shares in the
protected circuit is independent
of any sensitive variable

Problem: the cost of testing
probing security increases (very)
fast with circuit size and the # of
shares (since ∃ many tuples)

Technical challenge: scalability

𝒒-probing security [ISW, 2004]:
any 𝑞-tuple of shares in the
protected circuit is independent
of any sensitive variable

Problem: the cost of testing
probing security increases (very)
fast with circuit size and the # of
shares (since ∃ many tuples)

• Solution #1: direct verification of (weaker) circuit properties
• [Barthe et al., 2015/2019], [Bloem et al., 2018]

• Solution #2: composable verification with (stronger) properties
• [Barthe et al., 2016] – but limited to “abstract” circuits

• Solution #3: test more specific properties [Arribas et al., 2018]

Technical challenge: scalability

𝒒-probing security [ISW, 2004]:
any 𝑞-tuple of shares in the
protected circuit is independent
of any sensitive variable

Problem: the cost of testing
probing security increases (very)
fast with circuit size and the # of
shares (since ∃ many tuples)

• Solution #1: direct verification of (weaker) circuit properties
• [Barthe et al., 2015/2019], [Bloem et al., 2018]

• Solution #2: composable verification with (stronger) properties
• [Barthe et al., 2016] – but limited to “abstract” circuits

• Can be complementary: use #1 for gadgets, #2 for circuits

Does it go wrong (for hardware masking)?

• State-of-the-art hardware-oriented masking schemes
• Consolidating Masking Scheme (CMS, 2015)
• Domain-Oriented Masking (DOM, 2016)
• Unified Masking Approach (UMA, 2017)
• Generic Low-Latency Masking (GLM, 2018)

Does it go wrong (for hardware masking)?

• State-of-the-art hardware-oriented masking schemes
• Consolidating Masking Scheme (CMS, 2015)
• Domain-Oriented Masking (DOM, 2016)
• Unified Masking Approach (UMA, 2017)
• Generic Low-Latency Masking (GLM, 2018)

• Intuitively appealing constructions
• But no probing security proof at high orders

• Theoretical concern or practical risk?

Does it go wrong (for hardware masking)?

• State-of-the-art hardware-oriented masking schemes
• Consolidating Masking Scheme (CMS, 2015)
• Domain-Oriented Masking (DOM, 2016)
• Unified Masking Approach (UMA, 2017)
• Generic Low-Latency Masking (GLM, 2018)

• Intuitively appealing constructions
• But no probing security proof at high orders

• Theoretical concern or practical risk?

• [Moos et al., 2019]: all the higher-order extensions of
these schemes are affected by concrete flaws
• Next: CMS (local) and DOM (composability) examples…

Consolidating Masking Scheme

• Local flaw in the “ring refreshing” algorithm
• Attack with 3 probes for any d>3 shares

Problem: most of the
randomness cancels out…

Consolidating Masking Scheme

• Local flaw in the “ring refreshing” algorithm
• Attack with 3 probes for any d>3 shares

Problem: most of the
randomness cancels out…

Fix proposed by De Cnudde
(⇒ CMS more similar to DOM)

Composability remains unclear

Composability requirements (example)

𝑞1 internal probes

𝑞2 output probes

𝑞1 + 𝑞2 ≤ 𝑞

𝒒-(Strong) Non Interference [Barthe et al., CCS 2016]: a circuit
gadget (e.g., f1) is NI (SNI) any set of 𝑞1 + 𝑞2 probes can be

simulated with at most 𝑞1 + 𝑞2 (only 𝑞1) shares of each input

D(input shares||probes) ≈ D(input shares||simulation)

Composability requirements (example)

𝑞1 internal probes

𝑞2 output probes

𝑞1 + 𝑞2 ≤ 𝑞

𝒒-(Strong) Non Interference [Barthe et al., CCS 2016]: a circuit
gadget (e.g., f1) is NI (SNI) any set of 𝑞1 + 𝑞2 probes can be

simulated with at most 𝑞1 + 𝑞2 (only 𝑞1) shares of each input

D(input shares||probes) ≈ D(input shares||simulation)

Theorem [trivial composition]

≈ any composition of

q-SNI gadget is q-SNI

Domain Oriented Masking

• Two algorithms: DOM-indep and DOM-dep

• DOM-indep not sufficient to compose, e.g., z=x⊗x

Domain Oriented Masking

• Two algorithms: DOM-indep and DOM-dep

• DOM-indep not sufficient to compose, e.g., z=x⊗x

⇒ DOM-dep critical to compose but broken (& no fix)

Domain Oriented Masking

• Two algorithms: DOM-indep and DOM-dep

• DOM-indep not sufficient to compose, e.g., z=x⊗x

⇒ DOM-dep critical to compose but broken (& no fix)

• SOTA (2018): ∃ composable masking schemes that
ignore physical defaults such as glitches & hardware-
oriented masking schemes that mitigate glitches but
are at best probing secure (so not provably composable)

(Refined) model and security definition

Glitch-extended probes: probing
any output of a combinatorial
circuit allows the adversary to
observe all the circuit inputs

Example: 𝑝1 gives 𝑎, 𝑏 and 𝑐

𝑝1

(Refined) model and security definition

Glitch-extended probes: probing
any output of a combinatorial
circuit allows the adversary to
observe all the circuit inputs

Example: 𝑝1 gives 𝑎, 𝑏 and 𝑐

𝑝1

(SNI-related) clarification: the adversary can also probe the
stable register output 𝑑 so both 𝑝1 and 𝑝2 appear in proofs

𝑝2

(Refined) model and security definition

Glitch-extended probes: probing
any output of a combinatorial
circuit allows the adversary to
observe all the circuit inputs

Example: 𝑝1 gives 𝑎, 𝑏 and 𝑐

Definition: a gadget is glitch-robust 𝒒-SNI if it is
𝑞-SNI in the “glitch-extended” probing model

𝑝1

(SNI-related) clarification: the adversary can also probe the
stable register output 𝑑 so both 𝑝1 and 𝑝2 appear in proofs

𝑝2

(Refined) model and security definition

Glitch-extended probes: probing
any output of a combinatorial
circuit allows the adversary to
observe all the circuit inputs

Example: 𝑝1 gives 𝑎, 𝑏 and 𝑐

Definition: a gadget is glitch-robust 𝒒-SNI if it is
𝑞-SNI in the “glitch-extended” probing model

𝒑𝟏

(SNI-related) clarification: the adversary can also probe the
stable register output 𝑑 so both 𝑝1 and 𝑝2 appear in proofs

⇒ Shares’ fan in of secure gadgets should be minimum

𝑝2

(Refined) model and security definition

Glitch-extended probes: probing
any output of a combinatorial
circuit allows the adversary to
observe all the circuit inputs

Example: 𝑝1 gives 𝑎, 𝑏 and 𝑐

Definition: a gadget is glitch-robust 𝒒-SNI if it is
𝑞-SNI in the “glitch-extended” probing model

𝒑𝟏

(SNI-related) clarification: the adversary can also probe the
stable register output 𝑑 so both 𝑝1 and 𝑝2 appear in proofs

⇒ Shares’ fan in of secure gadgets should be minimum
⇒ Output probes (excluded in the SNI count) must be stable

𝒑𝟐

• TI gadget + SNI refresh + register: robust against
glitches & composable without glitches (not both)

• Extended probe on c’ reveals all R’s randomness

Note: the problem must be solved jointly

• TI gadget + SNI refresh + register: robust against
glitches & composable without glitches (not both)

• Extended probe on c’ reveals all R’s randomness

• Adding a register does not help (just probe c)

Note: the problem must be solved jointly

ISW mult. is glitch-robust 𝑞-SNI in 2 cycles

Example with:
• 𝑑 = 3
• 𝑞 = 2

ISW mult. is glitch-robust 𝑞-SNI in 2 cycles

The adversary can observe:

• 12 glitch-extended probes
• 𝑢𝑖,𝑗’s and 𝑐𝑖’s

• 3 stable (output) probes 𝑐𝑖’s

⇒ We need to describe a
simulator using 𝑞1 shares/input

ISW mult. is glitch-robust 𝑞-SNI in 2 cycles

• 1st example: 2 extended probes

• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• G 𝑐1 ≔ 𝑢1,1, 𝑢2,1, 𝑢3,1

to simul. with 2 shares/input

ISW mult. is glitch-robust 𝑞-SNI in 2 cycles

• 1st example: 2 extended probes

• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• G 𝑐1 ≔ 𝑢1,1, 𝑢2,1, 𝑢3,1

▪ 𝑎1, 𝑏2: use a 1st share of 𝑎, 𝑏
▪ 𝑟1,2: random value
▪ 𝑢1,1 (𝑎1𝑏1): use a 2nd share of 𝑏

▪ 𝑢2,1 (𝑎2𝑏1): use a 2nd share of a
▪ 𝑢3,1 (𝑎3𝑏1 + 𝑟1,3): random value

ISW mult. is glitch-robust 𝑞-SNI in 2 cycles

• 1st example: 2 extended probes

• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• G 𝑐1 ≔ 𝑢1,1, 𝑢2,1, 𝑢3,1

▪ 𝑎1, 𝑏2: use a 1st share of 𝑎, 𝑏
▪ 𝑟1,2: random value
▪ 𝑢1,1 (𝑎1𝑏1): use a 2nd share of 𝑏

▪ 𝑢2,1 (𝑎2𝑏1): use a 2nd share of a
▪ 𝑢3,1 (𝑎3𝑏1 + 𝑟1,3): random value

ISW mult. is glitch-robust 𝑞-SNI in 2 cycles

• 1st example: 2 extended probes

• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• G 𝑐1 ≔ 𝑢1,1, 𝑢2,1, 𝑢3,1

▪ 𝑎1, 𝑏2: use a 1st share of 𝑎, 𝑏
▪ 𝑟1,2: random value
▪ 𝑢1,1 (𝑎1𝑏1): use a 2nd share of 𝑏

▪ 𝑢2,1 (𝑎2𝑏1): use a 2nd share of a
▪ 𝑢3,1 (𝑎3𝑏1 + 𝑟1,3): random value

ISW mult. is glitch-robust 𝑞-SNI in 2 cycles

• 1st example: 2 extended probes

• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• G 𝑐1 ≔ 𝑢1,1, 𝑢2,1, 𝑢3,1

▪ 𝑎1, 𝑏2: use a 1st share of 𝑎, 𝑏
▪ 𝑟1,2: random value
▪ 𝑢1,1 (𝑎1𝑏1): use a 2nd share of 𝑏

▪ 𝑢2,1 (𝑎2𝑏1): use a 2nd share of 𝑎
▪ 𝑢3,1 (𝑎3𝑏1 + 𝑟1,3): random value

ISW mult. is glitch-robust 𝑞-SNI in 2 cycles

• 1st example: 2 extended probes

• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• G 𝑐1 ≔ 𝑢1,1, 𝑢2,1, 𝑢3,1

▪ 𝑎1, 𝑏2: use a 1st share of 𝑎, 𝑏
▪ 𝑟1,2: random value
▪ 𝑢1,1 (𝑎1𝑏1): use a 2nd share of 𝑏

▪ 𝑢2,1 (𝑎2𝑏1): use a 2nd share of 𝑎
▪ 𝑢3,1 (𝑎3𝑏1 + 𝑟1,3): random value

ISW mult. is glitch-robust 𝑞-SNI in 2 cycles

• 2nd example: 1 extended probe

• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• Non-extended 𝑐1

▪ to simul. with 1 share/input

ISW mult. is glitch-robust 𝑞-SNI in 2 cycles

• 2nd example: 1 extended probe

• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• Non-extended 𝑐1

▪ 𝑎1, 𝑏2: use a 1st share of 𝑎, 𝑏
▪ 𝑟1,2: random value
▪ 𝑐1: random value (simulation

with 1 share/input impossible
with an extended probe on 𝑐1)

DOM-indep is glitch-robust 𝑞-NI in 1 cycle

• Output probes can be extended

⇒ simulation of G(𝑢1,2) and
G(𝑐1) impossible without the
three input shares of 𝑎 & 𝑏

𝑐1 𝑐2 𝑐3

• [Faust et al., 2018]: glitch-robust SNI mult. in 2 cycles
• DOM-indep: glitch-robust NI mult. in 1 cycle

• What can we construct based on that?

Approaches to composition

• [Faust et al., 2018]: glitch-robust SNI mult. in 2 cycles
• DOM-indep: glitch-robust NI mult. in 1 cycle

• What can we construct based on that?

• [Cassiers et al., 2019] proof that any compositional
strategy that is correct in the standard probing
model remains valid in the robust probing model

Approaches to composition

• [Faust et al., 2018]: glitch-robust SNI mult. in 2 cycles
• DOM-indep: glitch-robust NI mult. in 1 cycle

• What can we construct based on that?

• [Cassiers et al., 2019] proof that any compositional
strategy that is correct in the standard probing model
remains valid in the robust probing model

⇒ Both trivial composition (e.g., using only SNI gadgets)
or optimized composition (e.g., combining NI/SNI
multiplications with SNI refreshes) can work

≈ tradeoff between verification complexity and performance

Approaches to composition

• [Faust et al., 2018]: glitch-robust SNI mult. in 2 cycles
• DOM-indep: glitch-robust NI mult. in 1 cycle

• What can we construct based on that?

• [Cassiers et al., 2019] proof that any compositional
strategy that is correct in the standard probing model
remains valid in the robust probing model

⇒ Both trivial composition (e.g., using only SNI gadgets)
or optimized composition (e.g., combining NI/SNI
multiplications with SNI refreshes) can work

≈ tradeoff between verification complexity and performance

• Next: focus on trivial composition (natural first step
& instrumental in our tool for full verification)

Approaches to composition

0

• Linear gadgets enable share isolation

⇒ Informally we expect trivial composition for free

Improving trivial composition

• Linear gadgets enable share isolation

⇒ Informally we expect trivial composition for free

• But “share-by-share” linear gadgets are only NI

⇒ Trivial SNI composition must refresh linear gadgets

Improving trivial composition

0

• [Cassiers & Standaert, 2018]: gadgets should behave
(w.r.t. simulatability) as if shares were isolated

⇒ “share-by-share” linear gadgets are PINI
(formalizes the idea of circuit share in DOM/TIs)

• Theorem: any combination of q-PINI gadgets is q-PINI

Probe Isolating Non-Interference (PINI)

• [Cassiers & Standaert, 2018]: gadgets should behave
(w.r.t. simulatability) as if shares were isolated

⇒ “share-by-share” linear gadgets are PINI
(formalizes the idea of circuit share in DOM/TIs)

• Theorem: any combination of q-PINI gadgets is q-PINI

• Used to prove a strategy by
[Goudarzi & Rivain, 2017]

• But can lead to much more…

Probe Isolating Non-Interference (PINI)

is PINI

0

• (∃ more efficient PINI multiplications in software)

Hardware Private Circuits

• (∃ more efficient PINI multiplications in software)

• Significantly improves trivial composition in hardware

Hardware Private Circuits

robust SNI Ref.

robust SNI AND

[Faust et al., 2018]:

SNI-based PINI mult.

in 4 cycles

0

• (∃ more efficient PINI multiplications in software)

• Significantly improves trivial composition in hardware

Hardware Private Circuits

robust SNI Ref.

robust SNI AND

[Faust et al., 2018]:

SNI-based PINI mult.

in 4 cycles

[Cassiers et al., 2019]: PINI maintained without output

register & refresh randomness can be accumulated off-path

0

0

0
(…remember this would not work with SNI)

• (∃ more efficient PINI multiplications in software)

• Significantly improves trivial composition in hardware

Hardware Private Circuits

robust SNI Ref.

robust SNI AND

[Faust et al., 2018]:

SNI-based PINI mult.

in 4 cycles

[Cassiers et al., 2019]: PINI maintained without output

register & refresh randomness can be accumulated off-path

0

0

• (∃ more efficient PINI multiplications in software)

• Significantly improves trivial composition in hardware

≈ optimization of [Faust et al., 2018] or fix of DOM

Hardware Private Circuits

robust SNI Ref.

robust SNI AND

[Faust et al., 2018]:

SNI-based PINI mult.

in 4 cycles

[Cassiers et al., 2019]: PINI maintained without output

register & refresh randomness can be accumulated off-path

0

• First efficient glitch-resistant masking scheme

that is provably composable at arbitrary orders
• Further improvements with optimized

composition are an interesting open problem
• But overheads compared to 1-cycle DOM limited

• Especially for some S-box structures that can take
advantage of the input refreshing asymmetry

Other PINI advantages

• First efficient glitch-resistant masking scheme

that is provably composable at arbitrary orders
• Further improvements with optimized

composition are an interesting open problem
• But overheads compared to 1-cycle DOM limited

• Especially for some S-box structures that can take
advantage of the input refreshing asymmetry

• Instrumental in the design of full verification tool
• Composable verification like [Barthe et al., 2016]

that applies to synthetized VHDL code rather than
abstract (e.g., glitch-free) circuit descriptions

• Also captures transitions (thanks to isolation)?

Other PINI advantages

State-of-the-art tools (roughly)

abstract concrete

direct

comp.-based

Barthe et al.
(Eurocrypt 2015)

maskComp.
(ACM CCS 2016)

Tight Private Circuits
(Asiacrypt 2018)

REBECCA
(Eurocrypt 2018)

maskVerif
(ESORICS 2019)

fullVerif
(new)

State-of-the-art tools (roughly)

abstract concrete

direct

comp.-based

Barthe et al.
(Eurocrypt 2015)

maskComp.
(ACM CCS 2016)

Tight Private Circuits
(Asiacrypt 2018)

REBECCA
(Eurocrypt 2018)

maskVerif
(ESORICS 2019)

fullVerif
(new)

• ∃ other approaches (e.g., spanning multiples cells

like the one by Eldib et al., or aiming at different,
more specific, goals like the one of Arribas et al.)

State-of-the-art tools (roughly)

abstract concrete

direct

comp.-based

Barthe et al.
(Eurocrypt 2015)

maskComp.
(ACM CCS 2016)

Tight Private Circuits
(Asiacrypt 2018)

REBECCA
(Eurocrypt 2018)

maskVerif
(ESORICS 2019)

fullVerif
(new)

• ∃ other approaches (e.g., spanning multiples cells

like the one by Eldib et al., or aiming at different,
more specific, goals like the one of Arribas et al.)

• Next, first full verification tool that applies to synthetized
HDL code and captures all physical defaults that can be
naturally modeled with probes (i.e., transitions & glitches)

Hardware composition verification tool

Trivial composition makes it simple for the designer:

"Just connect PINI gadgets together."

Do you really want to write a tool to check that all gadgets

are PINI ?

for gadget in gadgets:

assert gadget.is_pini(); // Uses maskVerif

Done ?

A masked Verilog block cipher implementation

Code:

• ~30 files

• ~4k LoC

Parmeters:

• d = 2,...,16

• roll_sb = 0, ..., 5

• roll_lb = 0, 1, 2

15*6*3 = 270 parameter sets

Complex code:

• FSM

• loops

• procedurally generated

code

• pipelining

• thousands of gadget

instances

• - ...

Example LoC:

rinrfrs1_chunk[Nrndrfrs1_each-1+ii*Nrndrfrs1_each -: Nrndrfrs1_each]

<= {rinrfrs1[(Nrndrfrs1_each/4)*4-1+(ii+8)*Nrndrfrs1_each -:

(Nrndrfrs1_each/4)],{(Nrndrfrs1_each/4){1'b0}}, rinrfrs1[(Nrndrfrs1_each/4)*2-

1+(ii+8)*Nrndrfrs1_each -: (Nrndrfrs1_each/4)],{(Nrndrfrs1_each/4){1'b0}}};

Is this thing (glitch,transition)-robust t-probing secure ?

What could go wrong ?

• Bad randomness input to gadgets

• Re-order of wires in a sharing

• Mix clock signals

• Mix valid and invalid data

• Output data at the right cycle

• Keep state around after computation is over

• …

Code written by a side-channel expert hardware designer.

And no:

• Use non-PINI gadgets

(Experiment might be biased.)

Tool workflow

• 2.5kLoC

• <10s runtime

Flexible: it is easy to implement

other strategies.

Tool workflow

• 2.5kLoC

• <10s to check

Checking other

strategies: 1 box change!

Source annotations

Source annotations: composite gadget

Source annotations: flatten (for the lazy)

THANKS
http://perso.uclouvain.be/fstandae/

http://perso.uclouvain.be/fstandae/

