From Trivial Composition to Full Verification and an Application to Masking in Hardware

Gaëtan Cassiers, François-Xavier Standaert

UCLouvain (Belgium)

VeriSiCC Seminar, Paris, France, September 2019

Side-Channel Analysis

executed operations

Side-Channel Analysis

Side-Channel Analysis

Masking (e.g., Boolean $x=x_{0}+x_{1}+\cdots+x_{d}$)

Noisy leakages security: $N \propto \frac{c}{\operatorname{MI}(X ; L)}$
Goal (ideally): $\operatorname{MI}(X ; \boldsymbol{L})<\operatorname{MI}\left(X_{i} ; L_{i}\right)^{d}$

Masking (e.g., Boolean $x=x_{0}+x_{1}+\cdots+x_{d}$)

Bounded moment security:

(d-1)th order statistical moment (ideally)

Noisy leakages security: $N \propto \frac{c}{\operatorname{MI}(X ; L)}$

Goal (ideally): $\operatorname{MI}(X ; \boldsymbol{L})<\operatorname{MI}\left(X_{i} ; L_{i}\right)^{d}$

Masking (e.g., Boolean $x=x_{0}+x_{1}+\cdots+x_{d}$)

Probing security:

Sets of (d-1) probes are \Perp of X (ideally)

PDF

Bounded moment security:

(d-1)th order statistical moment (ideally)

Noisy leakages security: $N \propto \frac{c}{\operatorname{MI}(X ; L)}$
Goal (ideally): $\operatorname{MI}(X ; L)<\operatorname{MI}\left(X_{i} ; L_{i}\right)^{d}$

Security reductions

bounded moment physical-qualitative

> [Barthe et al., Eurocrypt 2017]
[Duc et al., Eurocrypt 2014]

What can go wrong? (e.g., when computing $a . b$)

Issue \#1. Lack of randomness (can break the independence assumption)
$\left(\begin{array}{lll}a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\ a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} \\ a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3}\end{array}\right) \Rightarrow\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$
Example: probing $c_{1}=a_{1} .\left(b_{1}+b_{2}+b_{3}\right)$ reveals information on b (when $c_{1}=1$)

What can go wrong? (e.g., when computing $a . b$)

Issue \#1. Lack of randomness (can break the independence assumption)
$\left(\begin{array}{lll}a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\ a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} \\ a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3}\end{array}\right)+\left(\begin{array}{ccc}0 & r_{1} & r_{2} \\ r_{2} & 0 & r_{3} \\ r_{2} & r_{3} & 0\end{array}\right) \Rightarrow\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$

- mitigated by adding «refreshing gadgets»
- can be analyzed in the probing model

What can go wrong? (e.g., when computing $a . b$)

Issue \#1. Lack of randomness (can break the independence assumption)
$\left(\begin{array}{lll}a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\ a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} \\ a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3}\end{array}\right)+\left(\begin{array}{ccc}0 & r_{1} & r_{2} \\ r_{2} & 0 & r_{3} \\ r_{2} & r_{3} & 0\end{array}\right) \Rightarrow\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$

- mitigated by adding «refreshing gadgets »
- can be analyzed in the probing model

Issue \#2. Physical defaults

(can break the independence assumption)
Example: glitches (transcient values) «re-combine » the shares such that:

$$
L_{i}=\delta\left(x_{1} \cdot x_{2} \cdot x_{3}\right)
$$

(detected in the bounded moment model)

What can go wrong? (e.g., when computing $a . b$)

Issue \#1. Lack of randomness (can break the independence assumption)

$\left(\begin{array}{lll}a_{1} b_{1} & a_{1} b_{2} & a_{1} b_{3} \\ a_{2} b_{1} & a_{2} b_{2} & a_{2} b_{3} \\ a_{3} b_{1} & a_{3} b_{2} & a_{3} b_{3}\end{array}\right)+\left(\begin{array}{ccc}0 & r_{1} & r_{2} \\ r_{2} & 0 & r_{3} \\ r_{2} & r_{3} & 0\end{array}\right) \Rightarrow\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$

- mitigated by adding «refreshing gadgets »
- can be analyzed in the probing model

Issue \#2. Physical defaults

(can break the independence assumption)

- mitigated by adding a « noncompleteness » property [\approx Theshold Implementations]
- abstract property: can be analyzed in the probing model!

Technical challenge: scalability

q-probing security [ISW, 2004]: any q-tuple of shares in the protected circuit is independent of any sensitive variable

Technical challenge: scalability

> q-probing security [ISW, 2004]: any q-tuple of shares in the protected circuit is independent of any sensitive variable

Problem: the cost of testing probing security increases (very) fast with circuit size and the \# of shares (since \exists many tuples)

Technical challenge: scalability

q-probing security [ISW, 2004]: any q-tuple of shares in the protected circuit is independent of any sensitive variable

Problem: the cost of testing probing security increases (very) fast with circuit size and the \# of shares (since \exists many tuples)

- Solution \#1: direct verification of (weaker) circuit properties - [Barthe et al., 2015/2019], [Bloem et al., 2018]
- Solution \#2: composable verification with (stronger) properties
- [Barthe et al., 2016] - but limited to "abstract" circuits
- Solution \#3: test more specific properties [Arribas et al., 2018]

Technical challenge: scalability

q-probing security [ISW, 2004]: any q-tuple of shares in the protected circuit is independent of any sensitive variable

Problem: the cost of testing probing security increases (very) fast with circuit size and the \# of shares (since \exists many tuples)

- Solution \#1: direct verification of (weaker) circuit properties - [Barthe et al., 2015/2019], [Bloem et al., 2018]
- Solution \#2: composable verification with (stronger) properties - [Barthe et al., 2016] - but limited to "abstract" circuits
- Can be complementary: use \#1 for gadgets, \#2 for circuits

Does it go wrong (for hardware masking)?

- State-of-the-art hardware-oriented masking schemes
- Consolidating Masking Scheme (CMS, 2015)
- Domain-Oriented Masking (DOM, 2016)
- Unified Masking Approach (UMA, 2017)
- Generic Low-Latency Masking (GLM, 2018)

Does it go wrong (for hardware masking)?

- State-of-the-art hardware-oriented masking schemes
- Consolidating Masking Scheme (CMS, 2015)
- Domain-Oriented Masking (DOM, 2016)
- Unified Masking Approach (UMA, 2017)
- Generic Low-Latency Masking (GLM, 2018)
- Intuitively appealing constructions
- But no probing security proof at high orders
- Theoretical concern or practical risk?

Does it go wrong (for hardware masking)?

- State-of-the-art hardware-oriented masking schemes
- Consolidating Masking Scheme (CMS, 2015)
- Domain-Oriented Masking (DOM, 2016)
- Unified Masking Approach (UMA, 2017)
- Generic Low-Latency Masking (GLM, 2018)
- Intuitively appealing constructions
- But no probing security proof at high orders
- Theoretical concern or practical risk?
- [Moos et al., 2019]: all the higher-order extensions of these schemes are affected by concrete flaws
- Next: CMS (local) and DOM (composability) examples...

Consolidating Masking Scheme

- Local flaw in the "ring refreshing" algorithm
- Attack with 3 probes for any $d>3$ shares

Problem: most of the randomness cancels out...

Consolidating Masking Scheme

- Local flaw in the "ring refreshing" algorithm
- Attack with 3 probes for any $d>3$ shares

Problem: most of the randomness cancels out...

Fix proposed by De Cnudde (\Rightarrow CMS more similar to DOM)

Composability remains unclear

Composability requirements (example)

\boldsymbol{q}-(Strong) Non Interference [Barthe et al., CCS 2016]: a circuit gadget (e.g., f_{1}) is $\mathrm{NI}(\mathrm{SNI})$ any set of $q_{1}+q_{2}$ probes can be simulated with at most $q_{1}+q_{2}$ (only q_{1}) shares of each input

D (input shares||probes) $\approx \mathrm{D}$ (input shares\|simulation)

Composability requirements (example)

\boldsymbol{q}-(Strong) Non Interference [Barthe et al., CCS 2016]: a circuit gadget (e.g., f_{1}) is $\mathrm{NI}(\mathrm{SNI})$ any set of $q_{1}+q_{2}$ probes can be simulated with at most $q_{1}+q_{2}$ (only q_{1}) shares of each input

D (input shares||probes) $\approx \mathrm{D}$ (input shares\|simulation)

Domain Oriented Masking

- Two algorithms: DOM-indep and DOM-dep
- DOM-indep not sufficient to compose, e.g., $z=x \otimes x$

$$
\left(\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right)=\left(\begin{array}{cccc}
x_{0} \otimes x_{0} & \oplus\left(\begin{array}{cc}
\left.x_{0} \otimes x_{1} \oplus r_{0}\right) & \oplus \\
\left(x_{0} \otimes x_{2} \oplus r_{1}\right) \\
\left(x_{1} \otimes x_{0} \oplus r_{0}\right) & \oplus \\
\left(x_{2} \otimes x_{0} \oplus r_{1}\right) & \oplus \\
\oplus & \left(x_{1} \otimes x_{1} \otimes x_{1} \oplus r_{2}\right)
\end{array}\right) \oplus & \oplus & \left(x_{1} \otimes x_{2} \oplus r_{2}\right) \\
x_{2} \otimes x_{2}
\end{array}\right)
$$

Domain Oriented Masking

Two algorithms: DOM-indep and DOM-dep

- DOM-indep not sufficient to compose, e.g., $z=x \otimes x$

$$
\left(\begin{array}{l}
z_{0} \\
z_{1} \\
z_{2}
\end{array}\right)=\left(\begin{array}{ccccc}
x_{0} \otimes x_{0} & \oplus & \left(x_{0} \otimes x_{1} \oplus r_{0}\right) & \oplus & \left(x_{0} \otimes x_{2} \oplus r_{1}\right) \\
\left(x_{1} \otimes x_{0} \oplus r_{0}\right) & \oplus & x_{1} \otimes x_{1} & \oplus & \left(x_{1} \otimes x_{2} \oplus r_{2}\right) \\
\left(x_{2} \otimes x_{0} \oplus r_{1}\right) & \oplus & \left(x_{2} \otimes x_{1} \oplus r_{2}\right) & \oplus & x_{2} \otimes x_{2}
\end{array}\right)
$$

\Rightarrow DOM-dep critical to compose but broken (\& no fix)

Domain Oriented Masking

- Two algorithms: DOM-indep and DOM-dep
- DOM-indep not sufficient to compose, e.g., $z=x \otimes x$

\Rightarrow DOM-dep critical to compose but broken (\& no fix)
- SOTA (2018): \exists composable masking schemes that ignore physical defaults such as glitches \& hardwareoriented masking schemes that mitigate glitches but are at best probing secure (so not provably composable)

(Refined) model and security definition

Glitch-extended probes: probing any output of a combinatorial circuit allows the adversary to observe all the circuit inputs

Example: p_{1} gives a, b and c

(Refined) model and security definition

Glitch-extended probes: probing any output of a combinatorial circuit allows the adversary to observe all the circuit inputs

Example: p_{1} gives a, b and c
(SNI-related) clarification: the adversary can also probe the stable register output d so both p_{1} and p_{2} appear in proofs

(Refined) model and security definition

Glitch-extended probes: probing any output of a combinatorial circuit allows the adversary to observe all the circuit inputs Example: p_{1} gives a, b and c
(SNI-related) clarification: the adversary can also probe the stable register output d so both p_{1} and p_{2} appear in proofs

Definition: a gadget is glitch-robust \boldsymbol{q}-SNI if it is q-SNI in the "glitch-extended" probing model

(Refined) model and security definition

Glitch-extended probes: probing any output of a combinatorial circuit allows the adversary to observe all the circuit inputs Example: p_{1} gives a, b and c
(SNI-related) clarification: the adversary can also probe the stable register output d so both p_{1} and p_{2} appear in proofs

Definition: a gadget is glitch-robust q-SNI if it is q-SNI in the "glitch-extended" probing model
\Rightarrow Shares' fan in of secure gadgets should be minimum

(Refined) model and security definition

Glitch-extended probes: probing any output of a combinatorial circuit allows the adversary to observe all the circuit inputs

Example: p_{1} gives a, b and c
(SNI-related) clarification: the adversary can also probe the stable register output d so both p_{1} and p_{2} appear in proofs

Definition: a gadget is glitch-robust $q-S N I$ if it is q-SNI in the "glitch-extended" probing model
\Rightarrow Shares' fan in of secure gadgets should be minimum
\Rightarrow Output probes (excluded in the SNI count) must be stable

Note: the problem must be solved jointly

- TI gadget + SNI refresh + register: robust against glitches \& composable without glitches (not both)

- Extended probe on c^{\prime} reveals all R^{\prime} s randomness

Note: the problem must be solved jointly

- TI gadget + SNI refresh + register: robust against glitches \& composable without glitches (not both)

- Extended probe on c' reveals all R's randomness
- Adding a register does not help (just probe c)

ISW mult. is glitch-robust $q-$ SNI in 2 cycles

ISW mult. is glitch-robust q-SNI in 2 cycles

ISW mult. is glitch-robust q-SNI in 2 cycles

ISW mult. is glitch-robust q-SNI in 2 cycles

ISW mult. is glitch-robust q-SNI in 2 cycles

ISW mult. is glitch-robust q-SNI in 2 cycles

ISW mult. is glitch-robust q-SNI in 2 cycles

ISW mult. is glitch-robust q-SNI in 2 cycles

$$
\begin{aligned}
& \text { - } \mathbf{G}\left(u_{1,2}\right):=\left(a_{1}, b_{2}, r_{1,2}\right) \\
& \text { - } \mathbf{G}\left(c_{1}\right):=\left(u_{1,1}, u_{2,1}, u_{3,1}\right) \\
& \text { - } a_{1}, b_{2} \text { : use a } 1^{\text {st }} \text { share of } a, b \\
& \text { - } r_{1,2} \text { : random value } \\
& \text { - } u_{1,1}\left(a_{1} b_{1}\right) \text { : use a } 2^{\text {nd }} \text { share of } b \\
& \text { - } u_{2,1}\left(a_{2} b_{1}\right) \text { use a } 2^{\text {nd }} \text { share of } a \\
& \text { - } u_{3,1}\left(a_{3} b_{1}+r_{1,3}\right) \text { : random value }
\end{aligned}
$$

ISW mult. is glitch-robust q-SNI in 2 cycles

ISW mult. is glitch-robust q-SNI in 2 cycles

DOM-indep is glitch-robust q-NI in 1 cycle

Approaches to composition

- [Faust et al., 2018]: glitch-robust SNI mult. in 2 cycles
- DOM-indep: glitch-robust NI mult. in 1 cycle
- What can we construct based on that?

Approaches to composition

- [Faust et al., 2018]: glitch-robust SNI mult. in 2 cycles
- DOM-indep: glitch-robust NI mult. in 1 cycle - What can we construct based on that?
- [Cassiers et al., 2019] proof that any compositional strategy that is correct in the standard probing model remains valid in the robust probing model

Approaches to composition

- [Faust et al., 2018]: glitch-robust SNI mult. in 2 cycles
- DOM-indep: glitch-robust NI mult. in 1 cycle - What can we construct based on that?
- [Cassiers et al., 2019] proof that any compositional strategy that is correct in the standard probing model remains valid in the robust probing model
\Rightarrow Both trivial composition (e.g., using only SNI gadgets) or optimized composition (e.g., combining $\mathrm{NI} / \mathrm{SNI}$ multiplications with SNI refreshes) can work
\approx tradeoff between verification complexity and performance

Approaches to composition

- [Faust et al., 2018]: glitch-robust SNI mult. in 2 cycles
- DOM-indep: glitch-robust NI mult. in 1 cycle - What can we construct based on that?
- [Cassiers et al., 2019] proof that any compositional strategy that is correct in the standard probing model remains valid in the robust probing model
\Rightarrow Both trivial composition (e.g., using only SNI gadgets) or optimized composition (e.g., combining $\mathrm{NI} / \mathrm{SNI}$ multiplications with SNI refreshes) can work
\approx tradeoff between verification complexity and performance
- Next: focus on trivial composition (natural first step \& instrumental in our tool for full verification)

Improving trivial composition

- Linear gadgets enable share isolation

\Rightarrow Informally we expect trivial composition for free

Improving trivial composition

- Linear gadgets enable share isolation

\Rightarrow Informally we expect trivial composition for free
- But "share-by-share" linear gadgets are only NI

\Rightarrow Trivial SNI composition must refresh linear gadgets

Probe Isolating Non-Interference (PINI)

- [Cassiers \& Standaert, 2018]: gadgets should behave (w.r.t. simulatability) as if shares were isolated

\Rightarrow "share-by-share" linear gadgets are PINI (formalizes the idea of circuit share in DOM/TIs)
- Theorem: any combination of q-PINI gadgets is q-PINI

Probe Isolating Non-Interference (PINI)

[Cassiers \& Standaert, 2018]: gadgets should behave (w.r.t. simulatability) as if shares were isolated

\Rightarrow "share-by-share" linear gadgets are PINI (formalizes the idea of circuit share in DOM/TIs)

- Theorem: any combination of q-PINI gadgets is q-PINI
- Used to prove a strategy by [Goudarzi \& Rivain, 2017]
- But can lead to much more...

Hardware Private Circuits

- (\exists more efficient PINI multiplications in software)

Hardware Private Circuits

(\exists more efficient PINI multiplications in software)

- Significantly improves trivial composition in hardware

[Faust et al., 2018]: SNI-based PINI mult. in 4 cycles

Hardware Private Circuits

(\exists more efficient PINI multiplications in software)

- Significantly improves trivial composition in hardware

> [Faust et al., 2018]: SNI-based PINI mult. in 4 cycles

[Cassiers et al., 2019]: PINI maintained without output register (...remember this would not work with SNI)

Hardware Private Circuits

- (\exists more efficient PINI multiplications in software)
- Significantly improves trivial composition in hardware

> [Faust et al., 2018]: SNI-based PINI mult. in 4 cycles

[Cassiers et al., 2019]: PINI maintained without output register \& refresh randomness can be accumulated off-path

Hardware Private Circuits

- (\exists more efficient PINI multiplications in software)
- Significantly improves trivial composition in hardware

$$
\begin{aligned}
& \text { [Faust et al., 2018]: } \\
& \text { SNI-based PIN mult. } \\
& \text { in } 4 \text { cycles }
\end{aligned}
$$

[Cassiers et al., 2019]: PINI maintained without output register \& refresh randomness can be accumulated off-path \approx optimization of [Faust et al., 2018] or fix of DOM

Other PINI advantages

- First efficient glitch-resistant masking scheme that is provably composable at arbitrary orders
- Further improvements with optimized composition are an interesting open problem
- But overheads compared to 1-cycle DOM limited
- Especially for some S-box structures that can take advantage of the input refreshing asymmetry

Other PINI advantages

- First efficient glitch-resistant masking scheme that is provably composable at arbitrary orders
- Further improvements with optimized composition are an interesting open problem
- But overheads compared to 1-cycle DOM limited
- Especially for some S-box structures that can take advantage of the input refreshing asymmetry
- Instrumental in the design of full verification tool
- Composable verification like [Barthe et al., 2016] that applies to synthetized VHDL code rather than abstract (e.g., glitch-free) circuit descriptions
- Also captures transitions (thanks to isolation)?

State-of-the-art tools (roughly)

	abstract	concrete
direct	Barthe et al. (Eurocrypt 2015)	REBECCA (Eurocrypt 2018) maskVerif (ESORICS 2019)
comp.-based	maskComp. (ACM CCS 2016) Tight Private Circuits (Asiacrypt 2018)	fullVerif (new)

State-of-the-art tools (roughly)

- \exists other approaches (e.g., spanning multiples cells like the one by Eldib et al., or aiming at different, more specific, goals like the one of Arribas et al.)

State-of-the-art tools (roughly)

	abstract	concrete
direct	Barthe et al. (Eurocrypt 2015)	REBECCA (Eurocrypt 2018) maskVerif (ESORICS 2019)
comp.-based	maskComp. (ACM CCS 2016) Tight Private Circuits (Asiacrypt 2018)	fullVerif (new)

- \exists other approaches (e.g., spanning multiples cells like the one by Eldib et al., or aiming at different, more specific, goals like the one of Arribas et al.)
- Next, first full verification tool that applies to synthetized HDL code and captures all physical defaults that can be naturally modeled with probes (i.e., transitions \& glitches)

Hardware composition verification tool

Trivial composition makes it simple for the designer:
"Just connect PINI gadgets together."
Do you really want to write a tool to check that all gadgets are PINI ?
for gadget in gadgets:
assert gadget.is_pini(); // Uses maskVerif
Done?

A masked Verilog block cipher implementation

Code:

- ~30 files
- ~4k LoC

Parmeters:

- $d=2, \ldots, 16$
- roll_sb $=0, \ldots, 5$
- roll_lb = 0, 1, 2
$15 * 6 * 3=270$ parameter sets

Complex code:

- FSM
- loops
- procedurally generated code
- pipelining
- thousands of gadget instances
- - ...

Example LoC:

```
rinrfrs1_chunk[Nrndrfrs1_each-1+ii*Nrndrfrs1_each -: Nrndrfrs1_each]
<= {rinrfrs1[(Nrndrfrs1_each/4)*4-1+(ii+8)*Nrndrfrs1_each - :
(Nrndrfrs1_each/4)],{(Nrndrfrs1_each/4){1'b0}}, rinrfrs1[(Nrndrfrs1_each/4)*2-
1+(ii+8)*Nrndrfrs1_each -: (Nrndrfrs1_each/4)],{(Nrndrfrs1_each/4){1'b0}}};
```

Is this thing (glitch,transition)-robust t-probing secure ?

What could go wrong ?

- Bad randomness input to gadgets
- Re-order of wires in a sharing
- Mix clock signals
- Mix valid and invalid data
- Output data at the right cycle
- Keep state around after computation is over

Code written by a side-channel expert hardware designer.
And no:

- Use non-PINI gadgets
(Experiment might be biased.)

Tool workflow

- 2.5kLoC
- <10s runtime

Flexible: it is easy to implement other strategies.

Tool workflow

- 2.5kLoC
- <10s to check

Checking other strategies: 1 box change!

Source annotations

```
1 (* psim_prop = "PINI", psim_strat = "assumed", psim_order=d *)
2 module and_pini #(parameter d=2) (ina, inb, rnd, cl\overline{k}, out);
3
4 `include "ref_rnd.inc"
localparam n_rnd_mul = d*(d-1)/2;
localparam n_rnd = and_pini_nrnd;
(* psim_type = "sharing", psim_latency = 1 *) input [d-1:0] ina;
(* psim_type = "sharing", psim_latency = 0 *) input [d-1:0] inb;
10 (* psim_type = "sharing", psim_latency = 2 *) output [d-1:0] out;
1 1 ~ ( * ~ p s i m \_ t y p e ~ = ~ " c l o c k " ~ * ) ~ i n p u t ~ c l k ;
12 (*
23 wire [d-1:0] inb_ref;
24 MSKref \#(.d(d)) rfrsh (.in(inb), .clk(clk), .out(inb_ref), .rnd(rnd_ref));
25 MSKand \#(.d(d)) mul (.ina(ina), .inb(inb_ref), .clk(clk), .rnd(rnd_mul), .out(out));
26
27 endmodule
```


Source annotations: composite gadget

1 (* psim_prop = "PINI", psim_strat = "composite", psim_order=d *)
2 module MSKspook_sbox \#(parameter d=4) (in, rnd_ref, rnd_mul, clk, out);
6 (* psim_type = "sharing", psim_latency = 0, psim_count=spook_sbox_nbits*)
7 input [d*spook_sbox_nbits-1:0] in;
8 (* psim_type = "sharing", psim_latency = spook_sbox_lat, psim_count=spook_sbox_nbits *)
9 output [d*spook_sbox_nbits-1:0] out;
10 (* psim_type = "clock" *) input clk;
11 (*
12 psim_type = "random", psim_count=6,
13 psim_rnd_lat_0=0, psim_rnd_count_0=2*ref_lat_0,

21 psim_type = "random", psim_count=2,
22 psim_rnd_lat_0=0, psim_rnd_count_0=2*and_pini_lat_1,
23 psim_rnd_lat_1=1, psim_rnd_count_1=2*and_pini_lat_1
24 *) input [4*and_pini_lat_1-1:0] rnd_mul;
26 MSKreg \#(d) reg1 (clk, 1'b0, in[d+d*(3)-1 -: d], x0F);
27 MSKreg \#(d) reg2 (clk, 1'b0, in[d+d*(2)-1 -: d], x1F);

Source annotations: flatten (for the lazy)

```
1 (* psim_prop = "PINI", psim_strat = "composite", psim_order=d *)
2 module MSKsbox_unit \# (
3 parameter \(\mathrm{d}=2\),
4 parameter \(\operatorname{PDSBOX}=0\),
5 parameter Nbits = 128,
6 // Generation params (DO NOT TOUCH)
7 localparam AM_BUND_cols = 2**PDSBOX,
8 localparam SIZE_BUND_cols = d*Nbits/AM_BUND_cols,
9 localparam AM_cols = 32/AM_BUND_cols
10 ) (cols, rnd, clk, cols_post_sb);
11 `include "spook_sbox_rnd.inc"
12 input [SIZE_BUND_cols-1:0] cols;
13 input [spook_sbox_rnd*(SIZE_BUND_cols/(4*d))-1:0] rnd;
14 input clk;
15 output [SIZE_BUND_cols-1:0] cols_post_sb;
16 genvar i;
17 for( \(\left.i=0 ; i<A M \_c o l s ; i=i+1\right)\) begin: sb
18 MSKspook_sbox \#(.d(d)) sbi (
        .in(cols[(i+1)*4*d-1:i*4*d]),
        .rnd_ref(rnd \([(i+1) * 4 *\) ref_n_rnd-1 +(32/(2**PDSBOX))*and_pini_lat_1
        .rnd_mul(rnd[ (i+1)*4*and_pini_lat_1 -1
        .clk(clk),
    .out(cols_post_sb[(i+1)*4*d-1:i*4*d])
        );
    end
26 endmodule
```


THANKS

http://perso.uclouvain.be/fstandae/

