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Masking (e.g., Boolean 𝑥 = 𝑥0 + 𝑥1 +⋯+ 𝑥𝑑)

Noisy leakages security:

Goal (ideally):

𝑁 ∝ 𝑐

MI(𝑋;𝑳)

MI 𝑋; 𝑳 < MI 𝑋𝑖; 𝐿𝑖
𝑑

Probing security:

Sets of (𝑑-1) probes are       of 𝑋 (ideally)

𝑥 = 𝑥0 + 𝑥1 +⋯+ 𝑥𝑑
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[Barthe et al.,
Eurocrypt 2017]

[Duc et al.,
Eurocrypt 2014]

𝑥 = 𝑥0 + 𝑥1 +⋯+ 𝑥𝑑



What can go wrong? (e.g., when computing 𝑎. 𝑏)

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

⇒

𝑐1
𝑐2
𝑐3

Example: probing 𝑐1 = 𝑎1. 𝑏1 + 𝑏2 + 𝑏3
reveals information on 𝑏 (when 𝑐1 = 1)

Issue #1. Lack of randomness (can break the independence assumption)
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Issue #1. Lack of randomness (can break the independence assumption)

Example: glitches (transcient values)  
« re-combine » the shares such that:

(detected in the bounded moment model) 

𝐿𝑖 = 𝛿(𝑥1 ∙ 𝑥2 ∙ 𝑥3)

Issue #2. Physical defaults
(can break the independence assumption)



• mitigated by adding
«refreshing gadgets »
• can be analyzed in 
the probing model

What can go wrong? (e.g., when computing 𝑎. 𝑏)

𝑎1𝑏1 𝑎1𝑏2 𝑎1𝑏3
𝑎2𝑏1 𝑎2𝑏2 𝑎2𝑏3
𝑎3𝑏1 𝑎3𝑏2 𝑎3𝑏3

+

0 𝑟1 𝑟2
𝑟2 0 𝑟3
𝑟2 𝑟3 0

⇒

𝑐1
𝑐2
𝑐3

Issue #1. Lack of randomness (can break the independence assumption)

• mitigated by adding a « non-
completeness » property
[≈ Theshold Implementations]

• abstract property: can be
analyzed in the probing model! 

Issue #2. Physical defaults
(can break the independence assumption)
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Technical challenge: scalability

𝒒-probing security [ISW, 2004]:
any 𝑞-tuple of shares in the 
protected circuit is independent  
of any sensitive variable 

Problem: the cost of testing 
probing security increases (very) 
fast with circuit size and the # of 
shares (since ∃ many tuples) 

• Solution #1: direct verification of (weaker) circuit properties
• [Barthe et al., 2015/2019], [Bloem et al., 2018] 

• Solution #2: composable verification with (stronger) properties 
• [Barthe et al., 2016] – but limited to “abstract” circuits 

• Can be complementary:  use #1 for gadgets, #2 for circuits
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Does it go wrong (for hardware masking)?

• State-of-the-art hardware-oriented masking schemes
• Consolidating Masking Scheme (CMS, 2015)
• Domain-Oriented Masking (DOM, 2016)
• Unified Masking Approach (UMA, 2017)
• Generic Low-Latency Masking (GLM, 2018)

• Intuitively appealing constructions 
• But no probing security proof at high orders

• Theoretical concern or practical risk?

• [Moos et al., 2019]: all the higher-order extensions of 
these schemes are affected by concrete flaws
• Next: CMS (local) and DOM (composability) examples… 
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• Local flaw in the “ring refreshing” algorithm
• Attack with 3 probes for any d>3 shares

Problem: most of the 
randomness cancels out…



Consolidating Masking Scheme

• Local flaw in the “ring refreshing” algorithm
• Attack with 3 probes for any d>3 shares

Problem: most of the 
randomness cancels out…

Fix proposed by De Cnudde
(⇒ CMS more similar to DOM)

Composability remains unclear 



Composability requirements (example) 

𝑞1 internal probes

𝑞2 output probes

𝑞1 + 𝑞2 ≤ 𝑞

𝒒-(Strong) Non Interference [Barthe et al., CCS 2016]: a circuit 
gadget (e.g., f1) is NI (SNI) any set of 𝑞1 + 𝑞2 probes can be 

simulated with at most 𝑞1 + 𝑞2 (only 𝑞1) shares of each input

D(input shares||probes) ≈ D(input shares||simulation)



Composability requirements (example) 

𝑞1 internal probes

𝑞2 output probes

𝑞1 + 𝑞2 ≤ 𝑞

𝒒-(Strong) Non Interference [Barthe et al., CCS 2016]: a circuit 
gadget (e.g., f1) is NI (SNI) any set of 𝑞1 + 𝑞2 probes can be 

simulated with at most 𝑞1 + 𝑞2 (only 𝑞1) shares of each input

D(input shares||probes) ≈ D(input shares||simulation)

Theorem [trivial composition]

≈ any composition of                 

q-SNI gadget is q-SNI
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Domain Oriented Masking

• Two algorithms: DOM-indep and DOM-dep

• DOM-indep not sufficient to compose, e.g., z=x⊗x

⇒ DOM-dep critical to compose but broken (& no fix)

• SOTA (2018): ∃ composable masking schemes that 
ignore physical defaults such as glitches & hardware-
oriented masking schemes that mitigate glitches but 
are at best probing secure (so not provably composable)
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(Refined) model and security definition

Glitch-extended probes: probing 
any output of a combinatorial 
circuit allows the adversary to 
observe all the circuit inputs

Example: 𝑝1 gives 𝑎, 𝑏 and 𝑐

Definition: a gadget is glitch-robust 𝒒-SNI if it is 
𝑞-SNI in the “glitch-extended” probing model 

𝒑𝟏

(SNI-related) clarification: the adversary can also probe the 
stable register output 𝑑 so both 𝑝1 and 𝑝2 appear in proofs

⇒ Shares’ fan in of secure gadgets should be minimum 
⇒ Output probes (excluded in the SNI count) must be stable 

𝒑𝟐



• TI gadget + SNI refresh + register: robust against 
glitches & composable without glitches (not both) 

• Extended probe on c’ reveals all R’s randomness

Note: the problem must be solved jointly



• TI gadget + SNI refresh + register: robust against 
glitches & composable without glitches (not both) 

• Extended probe on c’ reveals all R’s randomness

• Adding a register does not help (just probe c)

Note: the problem must be solved jointly



ISW mult. is glitch-robust 𝑞-SNI in 2 cycles

Example with:
• 𝑑 = 3
• 𝑞 = 2



ISW mult. is glitch-robust 𝑞-SNI in 2 cycles

The adversary can observe:

• 12 glitch-extended probes
• 𝑢𝑖,𝑗’s and 𝑐𝑖’s

• 3 stable (output) probes 𝑐𝑖’s

⇒ We need to describe a 
simulator using 𝑞1 shares/input
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• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• G 𝑐1 ≔ 𝑢1,1, 𝑢2,1, 𝑢3,1

to simul. with 2 shares/input
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▪ to simul. with 1 share/input



ISW mult. is glitch-robust 𝑞-SNI in 2 cycles

• 2nd example: 1 extended probe

• G(𝑢1,2) ≔ 𝑎1, 𝑏2, 𝑟1,2
• Non-extended 𝑐1

▪ 𝑎1, 𝑏2: use a 1st share of 𝑎, 𝑏
▪ 𝑟1,2: random value
▪ 𝑐1: random value (simulation 

with 1 share/input impossible 
with an extended probe on 𝑐1)



DOM-indep is glitch-robust 𝑞-NI in 1 cycle

• Output probes can be extended

⇒ simulation of G(𝑢1,2) and 
G(𝑐1) impossible without the
three input shares of 𝑎 & 𝑏

𝑐1 𝑐2 𝑐3
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• [Faust et al., 2018]: glitch-robust SNI mult. in 2 cycles
• DOM-indep: glitch-robust NI mult. in 1 cycle

• What can we construct based on that?

• [Cassiers et al., 2019] proof that any compositional 
strategy that is correct in the standard probing model 
remains valid in the robust probing model

⇒ Both trivial composition (e.g., using only SNI gadgets) 
or optimized composition (e.g., combining NI/SNI 
multiplications with SNI refreshes) can work

≈ tradeoff between verification complexity and performance

• Next: focus on trivial composition (natural first step    
& instrumental in our tool for full verification)

Approaches to composition

0



• Linear gadgets enable share isolation 

⇒ Informally we expect trivial composition for free

Improving trivial composition



• Linear gadgets enable share isolation 

⇒ Informally we expect trivial composition for free

• But “share-by-share” linear gadgets are only NI

⇒ Trivial SNI composition must refresh linear gadgets  

Improving trivial composition

0



• [Cassiers & Standaert, 2018]: gadgets should behave 
(w.r.t. simulatability) as if shares were isolated 

⇒ “share-by-share” linear gadgets are PINI      
(formalizes the idea of circuit share in DOM/TIs)

• Theorem: any combination of q-PINI gadgets is q-PINI

Probe Isolating Non-Interference (PINI)



• [Cassiers & Standaert, 2018]: gadgets should behave 
(w.r.t. simulatability) as if shares were isolated 

⇒ “share-by-share” linear gadgets are PINI      
(formalizes the idea of circuit share in DOM/TIs)

• Theorem: any combination of q-PINI gadgets is q-PINI

• Used to prove a strategy by 
[Goudarzi & Rivain, 2017]

• But can lead to much more…

Probe Isolating Non-Interference (PINI)

is PINI

0



• (∃ more efficient PINI multiplications in software)

Hardware Private Circuits
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(…remember this would not work with SNI)
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Hardware Private Circuits

robust SNI Ref.
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SNI-based PINI mult.        

in 4 cycles

[Cassiers et al., 2019]: PINI maintained without output 

register & refresh randomness can be accumulated off-path
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• (∃ more efficient PINI multiplications in software)

• Significantly improves trivial composition in hardware

≈ optimization of [Faust et al., 2018] or fix of DOM

Hardware Private Circuits

robust SNI Ref.

robust SNI AND

[Faust et al., 2018]: 

SNI-based PINI mult.        

in 4 cycles

[Cassiers et al., 2019]: PINI maintained without output 

register & refresh randomness can be accumulated off-path

0



• First efficient glitch-resistant masking scheme 

that is provably composable at arbitrary orders
• Further improvements with optimized 

composition are an interesting open problem
• But overheads compared to 1-cycle DOM limited

• Especially for some S-box structures that can take 
advantage of the input refreshing asymmetry

Other PINI advantages



• First efficient glitch-resistant masking scheme 

that is provably composable at arbitrary orders
• Further improvements with optimized 

composition are an interesting open problem
• But overheads compared to 1-cycle DOM limited

• Especially for some S-box structures that can take 
advantage of the input refreshing asymmetry

• Instrumental in the design of full verification tool
• Composable verification like [Barthe et al., 2016] 

that applies to synthetized VHDL code rather than 
abstract (e.g., glitch-free) circuit descriptions

• Also captures transitions (thanks to isolation)?

Other PINI advantages
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direct
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abstract concrete

direct

comp.-based

Barthe et al.
(Eurocrypt 2015)

maskComp.
(ACM CCS 2016)

Tight Private Circuits
(Asiacrypt 2018)

REBECCA
(Eurocrypt 2018)

maskVerif
(ESORICS 2019)

fullVerif
(new)

• ∃ other approaches (e.g., spanning multiples cells 

like the one by Eldib et al., or aiming at different, 
more specific, goals like the one of Arribas et al.)

• Next, first full verification tool that applies to synthetized 
HDL code and captures all physical defaults that can be 
naturally modeled with probes (i.e., transitions & glitches)



Hardware composition verification tool

Trivial composition makes it simple for the designer:

"Just connect PINI gadgets together."

Do you really want to write a tool to check that all gadgets 

are PINI ?

for gadget in gadgets:

assert gadget.is_pini(); // Uses maskVerif

Done ?



A masked Verilog block cipher implementation

Code:

• ~30 files

• ~4k LoC

Parmeters:

• d = 2,...,16

• roll_sb = 0, ..., 5

• roll_lb = 0, 1, 2

15*6*3 = 270 parameter sets

Complex code:

• FSM

• loops

• procedurally generated

code

• pipelining

• thousands of gadget 

instances

• - ...

Example LoC:

rinrfrs1_chunk[Nrndrfrs1_each-1+ii*Nrndrfrs1_each -: Nrndrfrs1_each] 

<= {rinrfrs1[(Nrndrfrs1_each/4)*4-1+(ii+8)*Nrndrfrs1_each -: 

(Nrndrfrs1_each/4)],{(Nrndrfrs1_each/4){1'b0}}, rinrfrs1[(Nrndrfrs1_each/4)*2-

1+(ii+8)*Nrndrfrs1_each -: (Nrndrfrs1_each/4)],{(Nrndrfrs1_each/4){1'b0}}};

Is this thing (glitch,transition)-robust t-probing secure ?



What could go wrong ?

• Bad randomness input to gadgets

• Re-order of wires in a sharing

• Mix clock signals

• Mix valid and invalid data

• Output data at the right cycle

• Keep state around after computation is over

• …

Code written by a side-channel expert hardware designer.

And no:

• Use non-PINI gadgets

(Experiment might be biased.)



Tool workflow

• 2.5kLoC

• <10s runtime

Flexible: it is easy to implement

other strategies.



Tool workflow

• 2.5kLoC

• <10s to check

Checking other

strategies: 1 box change!



Source annotations



Source annotations: composite gadget



Source annotations: flatten (for the lazy)



THANKS
http://perso.uclouvain.be/fstandae/

http://perso.uclouvain.be/fstandae/

