
VERISICC
Deliverable L4.3

Evaluation Report

CALL: FUI25

NAME OF THIS PROJECT: VERISICC

Leader of this deliverable

• Partner: NinjaLab

• Contact name: Thomas Roche

• Contact information: thomas@ninjalab.io

Leader of the project

• Company: CryptoExperts

• Contact name: Sonia Belaïd

• Contact information: sonia.belaid@cryptoexperts.com, 06 68 75 30 66

Partners

• SMEs: CryptoExperts and NinjaLab

• Big Business: IDEMIA

• Public Institutions: INRIA, ANSSI, and Université du Luxembourg

Version : 0.1

VERISICC L4.3. Evaluation Report AAP FUI25

Table of contents

1 Introduction 3

2 Device Under Test 4
2.1 Product Presentation . 4
2.2 Side-Channel Setup . 4
2.3 Trigger Mechanism . 5

3 Implementations 7
3.1 Internal Pseudo-Random Generator . 8
3.2 Unprotected PRESENT Sbox . 8
3.3 2-Share PRESENT Sbox . 8
3.4 3-Share PRESENT Sbox . 9

4 Unprotected PRESENT Sbox 11
4.1 First Observations . 12
4.2 Leakage Analysis . 15

5 2-Share PRESENT Sbox 18
5.1 Acquisition Campaign . 18
5.2 Leakage Analysis . 21
5.3 A Sensitive Leakage . 27

6 3-Share PRESENT Sbox 32
6.1 Acquisition Campaign . 32
6.2 First-Order Leakage Analysis . 35
6.3 Second-Order Leakage Analysis . 41

Page 2/42

VERISICC L4.3. Evaluation Report AAP FUI25

1. Introduction

The deliverable L4.3 is the output of VERISICC task T4.3 focusing on the side-channel evaluation of
formally proved masked implementations in practice. To this end, the study considers a specific chip
and masked implementations provided by VERISICC project.

Masking schemes are proven secure in generic and idealistic models, this approach has the
benefit to avoid designing masking schemes for each and every chip that might need to run secure
cryptography. The downside is twofold: the idealistic models might not capture all real leakages (and
then the masking scheme security proofs are worthless) or they might consider leakages that are
not present in practice (and then add unnecessary constraints on the scheme, making it more costly
than really needed).

Our goal in this study is precisely to estimate the distance between the classical idealistic models
in which the masked implementation are proven and reality. In a previous task (see deliverable
L3.3, the output of VERISICC task T3.3 focusing on the side-channel characterization of a chip) we
showed that a chip can exhibit leakage functions much more complex than expected and then might
not be properly captured by the model. In the present study, we will take another approach: we will
consider masked implementations that enjoy a security proof and look for sensitive leakages on our
selected chip.

The study will use the same target chip and side-channel setup than for the characterization task
(T3.3, deliverable L3.3) except for the choice of a more stable external clock. All details are recalled
in Section 2.

The PRESENT Sbox has been chosen as target cryptographic primitive for this study, three
implementations are considered, they are detailed in Section 3 and the source code can be found in
the study material provided with this document 1. The first implementation is unprotected, it will set
the reference for our study. The second and third implementations (respectively 2-share and 3-share
masking schemes) result from the work of Barthe et al. [BGG+21].

The main results and conclusions are summarized below:

• The acquisition chain is setup for highly precise power consumption execution traces. It results
in a moderate speed acquisition process and a large quantity of data to analyze.

• As expected from a similar setup, the side-channel traces show coherent leakage with the chip
characterization results (T3.3, deliverable L3.3).

• The 2-share PRESENT Sbox implementation shows to leak sensitive information (i.e. first-
order leakage of unmasked data) on the OpenCard .

• The root of the unintended leakages is tracked down with the help of the asm code together with
a fine-grained timing analysis of the execution traces. However, without further experiments
and/or a precise knowledge of the OpenCard MCU design, it is barely possible to properly
extend the leakage model with this new observation (although patching the leakage for this
specific case seems completely doable).

• Finally, an extensive leakage assessment of the 3-share implementation with respect to 1st-
and 2nd-order leakages shows no sensitive leakages. Hence, for this implementation, the
leakage model used by the developers seems well adapted, or – in other words – this imple-
mentation does not fall (by chance) into the unknown leakage characteristics of the OpenCard .

1L4.3_evaluation_sources.tgz

Page 3/42

VERISICC L4.3. Evaluation Report AAP FUI25

2. Device Under Test

2.1. Product Presentation
The device (so called OpenCard or simply DUT in the following) we rely on is a 0.13um 32-bit
Contact Smartcard IC developed by Beijing ChipCity Technology Co., Ltd. [Bei]. The IC has been
EAL4+ certified in Asia (out of the European SOG-IS scheme). It features an ARM core SC 100 with
18 KB of RAM, 8 KB of ROM and 548 KB of FLASH. Figure 1 gives an overview of the IC die and of
the main blocks.

Figure 1: General view of the die after sample opening; mag 50X

The code for this characterization task is compiled from a Keil simulator using as a target an
ARM7TDMI-S before being uploaded on the OpenCard . The third level of optimization is activated
together with the pre-processing option cpreproc and the interwork qualifier to get ARM/thumb
interworking support.

The OpenCard offers ISO7816 communication interface and can run on either internal (several
clock frequency are available 3.5/7/9/14/28MHz) or external clock. The clock is configured through
the System Control Register SFR/SCSYS [Bei, 4.2.2], the external clock configuration is chosen for
the study to avoid the internal clock jitter. Indeed during the previous characterization task – T3.3, see
deliverable L3.3 – the internal clock of the smartcard showed a small jitter that required side-channel
trace resynchronization. The external clock is set to 1MHz.

2.2. Side-Channel Setup
The NinjaLab acquisition chain is detailed below

• DELL Precision Tower 3420 desktop computer equipped with a 3.6GHz Intel Core i7-7700
processor, 32GB of RAM and a 2TB hard disk drive;

• Pico Technology PicoScope 6424E oscilloscope, with a 500MHz frequency bandwidth, sam-
pling rate up to 5GSa/s, 4 channels and a channel shared memory of 4G samples [Pic19];

• Scaffold board [Led]

Page 4/42

VERISICC L4.3. Evaluation Report AAP FUI25

The Scaffold board, developed by Ledger, is made for security research on embedded devices.
It allows to easily communicate with a smartcard (thanks to its smartcard kit2 and its ISO7816 mod-
ule3) and offers a precise measure of the DUT power consumption. The Scaffold setup is depicted
on Figure 2. To simplify our analysis we will focus on power consumption ignoring Electromagnetic
Radiations (EM for short). Indeed EM measurements add a degree of freedom, the EM probe po-
sition, and substantially increase the effort for characterization (already enormous as we will see in
the following). Hence, for all the study, the reader should not forget that our conclusions only hold for
power consumption and not all side-channels that an adversary might eavesdrop on the OpenCard .

I/O Trig (on last APDU byte)

Power

OpenCard

Figure 2: General View of the Scaffold Setup

The Scaffold board possesses a simple way to set a trigger signal at the beginning of a specific
APDU transmission. However, our goal here is mainly to observe the side-channel leakage of short
execution runs which makes the Scaffold trigger functionality useless:

• the trigger will be far from what we need to observe (with respect to the target observation
length);

• each and every target execution on the card should be launched by an APDU command (to
set the trigger signal). It will greatly impact the acquisition time as the ISO7816 communication
protocol is pretty slow.

To avoid the above mentioned issues, we developed a custom trigger signal.

2.3. Trigger Mechanism
From the OpenCard datasheet [Bei], the smartcard I/O PIN can be dynamically re-configured as a
GPIO. The idea is then to re-program the I/O PIN as a GPIO during the program execution (poten-
tially executing many target instructions sequences) and send trigger signal before and after each
target execution. Then, program the I/O PIN back to the ISO7816 communication engine to send the

2https://donjonscaffold.readthedocs.io/en/latest/kit_smartcard.html
3https://donjonscaffold.readthedocs.io/en/latest/iso7816_module.html

Page 5/42

https://donjonscaffold.readthedocs.io/en/latest/kit_smartcard.html
https://donjonscaffold.readthedocs.io/en/latest/iso7816_module.html

VERISICC L4.3. Evaluation Report AAP FUI25

program return value and exit code.

Here is the detailed procedure:

• at card initialization:

– set the 18th bit of register SCCM0 to 1, leave the other bits unchanged (GPIO ck enable,
see [Bei, 4.2.1])

– set register GPIODIR1 to 0xFFFF00FF (GPIO mode "out", see [Bei, 10.2.4])

• when receiving an APDU command:

– after the APDU is fully received and before processing: set register SCGCON to 0x00000400
(GPIO configuration of the I/O PIN, see [Bei, 4.2.12])

– after processing and before the result APDU is sent: set register SCGCON to 0x00000000
(ISO7816 I/O configuration of the I/O PIN, see [Bei, 4.2.12])

• to send a trig signal:

– before and after the target execution: set register GPIODAT1 to 0xFFFF00FF (drop I/O
PIN to low level, see [Bei, 10.2.3]), then set register GPIODAT1 back to 0xFFFFFFFF
(raise I/O PIN back to high level)

Register address desc

SCCM0 0x0F0000 Clock Management Register 0
GPIODIR1 0x0F8C0C GPIO P4 P5 direction control register
SCGCON 0x0F0040 GPIO Enable Register
GPIODAT1 0x0F8C08 GPIO P4 P5 data register

The following asm function is used to indicate the beginning or the end of a target execution, the
C snippet of code is an example of the trigger mechanism usage, the target execution is a bitsliced
unprotected PRESENT Sbox computation (full code can be found in the supplementary material
provided with this document 4).

;; GPIO P4~P5 data register
#define GPIODAT1 0xF8C08
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Function TRIG
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
TRIG

TRIG00 r3
TRIGFF r3
bx lr

unsigned long src_bs [4], dst_bs [4];
unsigned long src[2], dst [2];

// src is filled with fresh randoms
[...]

// from 2 32-bit values
// to 4 16-bit bitsliced values
toBitslice (src_bs , src);

TRIG ();
// execute 16 PRESENT Sbox calls
presentUnprotected (dst_bs , src_bs);
TRIG ();

fromBitslice (dst , dst_bs);

4L4.3_evaluation_sources.tgz

Page 6/42

VERISICC L4.3. Evaluation Report AAP FUI25

Where TRIG00 (resp. TRIGFF) macro forces the I/O line to drop from its default high level to low
(resp. from low to high).

Figure 3 depicts the side-channel acquisition of the bitsliced unprotected PRESENT Sbox com-
putation. The blue signal is the I/O line while the red signal is the power consumption of the DUT.

Figure 3: Unprotected PRESENT Sbox – I/O (blue) and Power (red) Trace

3. Implementations

The PRESENT Sbox has been chosen as target cryptographic primitive for this study, three imple-
mentations are considered. The asm code can be found in the study material provided with this
document 5.

The first implementation is unprotected, it will set the reference for our study. The second and
third implementations result from the work of Barthe et al. [BGG+21].

A call to these primitives on the smartcard is wrapped inside a series of APDU commands:

• Three APDU commands allow to set the three 4-Byte seeds of the xorshift96 PRNG (see below
Section 3.1);

• An APDU command selects the PRESENT Sbox implementation;

• An APDU command sets the number of executions of the PRESENT Sbox:

• An APDU command launches the run of the selected PRESENT Sbox for the chosen number
of executions. Between two executions, the inputs and an entropy buffer are refreshed with
randoms (from successive PRNG calls).

All three PRESENT Sbox implementations are bitsliced and take 64-bit inputs stored as 4 16-
bit bitsliced inputs. The 4 bitsliced inputs are stored in 32-bit unsigned long variables (denoted
{A,B,C,D}) where only the 16 least significant bits are used. For each bit position 0 ≤ i < 16, the
4 bits at position i (denoted (Ai, Bi, Ci, Di)) constitute a PRESENT Sbox input.

The masked implementations work on shared input variables (2 or 3 shares), their variables (e.g.
any of their inputs {A,B,C,D}) then represent arrays (of length 2 or 3) of unsigned long variables.
The jth share of variable X is then referred to as X[j] and the unmasked value X is the exclusive-or

5L4.3_evaluation_sources.tgz

Page 7/42

VERISICC L4.3. Evaluation Report AAP FUI25

of its shares. Also, the masked implementations require fresh randoms that are used internally to
ensure probing security. Before each call to these implementations, all necessary randoms are gen-
erated from successive PRNG calls and stored in the entropy buffer.

In all the following, ⊕ will denote the exclusive-or operation between two unsigned long vari-
ables while & will denote the bitwise-and operation.

3.1. Internal Pseudo-Random Generator
Pseudo-random values are generated with Marsaglia’s xorshift96 pseudo-random generator [Mar03],
initialized with a 12-Byte seed.

When randoms are needed, a call to the macro GET_RAND iterates the pseudo-random generator
and extracts 32 bits from its internal state.

3.2. Unprotected PRESENT Sbox
The bitsliced unprotected implementation of the PRESENT Sbox is a straightforward C implementa-
tion. Computing the 16 Sbox outputs (as 4 unsigned long variables denoted {E,F,G,H})) is done
as follows:

E ← B&C ⊕A&B&D ⊕A&C&D ⊕B&C&D ⊕A⊕ C ⊕D ⊕ 0xFFFFFFFF
F ← A&C ⊕A&D ⊕ C&D ⊕A&B&D ⊕A&C&D ⊕A⊕B ⊕ 0xFFFFFFFF
G ← A&B ⊕A&C ⊕A&B&D ⊕A&C&D ⊕B&C&D ⊕A⊕ C
E ← B&C ⊕A⊕B ⊕D

The operation order does not matter here and then we let the C compiler do its work.

3.3. 2-Share PRESENT Sbox
The 2-share version of the PRESENT Sbox is an asm implementation borrowed from 2021 Barthe
et al.’s paper [BGG+21]. This implementation uses a decomposition into three subfunctions of the
PRESENT Sbox, as follows:

Sbox : A ◦ G ◦ G ◦ B,

where A,B,G are vectorial Boolean functions from {0, 1}4 into itself and A,B are affine while G is
quadratic. The masking scheme requires 28 fresh random bytes (in addition to the 8-Byte random
that is needed to share the 4 16-bit input variables {A,B,C,D}).

All in all, between two calls to the 2-share PRESENT Sbox implementation, 48 random bytes are
extracted thanks to 12 calls to the PRNG:

• 8 bytes to generate new inputs {A,B,C,D};

• 8 bytes to share the inputs {A,B,C,D} → {(A[0], A[1]), (B[0], B[1]), (C[0], C[1]), (D[0], D[1])};

• 32 bytes for the probing security, stored in a 8 length array R of unsigned long variables (the
first 4 bytes, i.e. the first cell of R, are not used). Moreover,

– a 32-bit random is consumed in B;

– three 32-bit randoms are consumed for each call to G;

Page 8/42

VERISICC L4.3. Evaluation Report AAP FUI25

For reasons of completeness, and because the asm implementation might not be trivial to un-
derstand, we unfold here the implementations of the A,B,G subroutines. Note that the computation
order of the successive operations is here crucial to assess 1st order security.

2-share implementation of A

G[0] ← A[0]
E[0] ← C[0]⊕A[0]
H[0] ← C[0]⊕A[0]⊕ 0xFFFFFFFF ⊕D[0]
F [0] ← B[0]⊕ 0xFFFFFFFF

G[1] ← A[1]
E[1] ← C[1]⊕A[1]
H[1] ← C[1]⊕A[1]⊕D[1]
F [1] ← B[1]

2-share implementation of B

H[0] ← D[0]⊕B[0]⊕ 0xFFFFFFFF
E[0] ← A[0]⊕B[0]
F [0] ← B[0]⊕ C[0]⊕R[1]
G[0] ← C[0]

H[1] ← D[1]⊕B[1]
E[1] ← A[1]⊕B[1]
F [1] ← B[1]⊕ C[1]⊕R[1]
G[1] ← C[1]

R ← R+ 4

2-share implementation of G

H[0] ← (D[0]&B[0])⊕R[2]⊕ C[0]⊕ (D[1]&B[0])
E[0] ← (C[1]&B[0])⊕ (D[0]&B[0])⊕R[1]⊕ (C[0]&B[0])⊕A[0]⊕ (D[1]&B[0])
G[0] ← B[0]
F [0] ← (A[0]&B[0])⊕D[0]⊕R[3]⊕ (B[0]&A[1])

H[1] ← (D[0]&B[1])⊕R[2]⊕ C[1]⊕ (D[1]&B[1])
E[1] ← (C[0]&B[1])⊕ (D[0]&B[1])⊕R[1]⊕ (C[1]&B[1])⊕A[1]⊕ (D[1]&B[1])
G[1] ← B[1]
F [1] ← (A[1]&B[1])⊕D[1]⊕ [(B[1]&A[0])⊕R[3]]

R ← R+ 12

3.4. 3-Share PRESENT Sbox
The 3-share version of the PRESENT Sbox is an asm implementation borrowed from 2021 Barthe et
al.’s paper [BGG+21]. As for the 2-share version, this implementation uses the decomposition into

Page 9/42

VERISICC L4.3. Evaluation Report AAP FUI25

three subfunctions of the PRESENT Sbox:

Sbox : A ◦ G ◦ G ◦ B,

where A,B,G are vectorial Boolean functions from {0, 1}4 into itself and A,B are affine while G is
quadratic. The masking scheme requires 104 fresh random bytes (in addition to the 16-Byte random
that are needed by the sharing of the 4 16-bit input variables {A,B,C,D}).

All in all, between two calls to the 3-share PRESENT Sbox implementation, 132 random bytes
are extracted thanks to 33 calls to the PRNG:

• 8 bytes to generate new inputs {A,B,C,D};

• 16 bytes to share the inputs {A,B,C,D} →
{(A[0], A[1], A[2]), (B[0], B[1], B[2]), (C[0], C[1], C[2]), (D[0], D[1], D[2])};

• 108 bytes for the probing security, stored in a 27 length array R of unsigned long variables
(the first 4 bytes, i.e. the first cell of R, are not used). Moreover,

– eight 32-bit randoms are consumed in B;

– nine 32-bit randoms are consumed for each call to G;

For reasons of completeness, and because the asm implementation might not be trivial to un-
derstand, we unfold here the implementations of the A,B,G subroutines. Note that the computation
order of the successive operations is here crucial to assess 2nd order security.

3-share implementation of A

G[0] ← A[0]
E[0] ← C[0]⊕A[0]
H[0] ← C[0]⊕A[0]⊕ 0xFFFFFFFF ⊕D[0]
F [0] ← B[0]⊕ 0xFFFFFFFF

G[1] ← A[1]
E[1] ← C[1]⊕A[1]
H[1] ← C[1]⊕A[1]⊕D[1]
F [1] ← B[1]

G[2] ← A[2]
E[2] ← C[2]⊕A[2]
H[2] ← C[2]⊕A[2]⊕D[2]
F [2] ← B[2]

3-share implementation of B

Page 10/42

VERISICC L4.3. Evaluation Report AAP FUI25

H[0] ← D[0]⊕B[0]⊕ 0xFFFFFFFF ⊕R[1]
E[0] ← A[0]⊕B[0]⊕R[3]
F [0] ← B[0]⊕ C[0]⊕R[5]
G[0] ← C[0]⊕R[7]

H[1] ← D[1]⊕B[1]⊕R[2]
E[1] ← A[1]⊕B[1]⊕R[4]
F [1] ← B[1]⊕ C[1]⊕R[6]
G[1] ← C[1]⊕R[8]

H[2] ← D[2]⊕B[2]⊕ [R[1]⊕R[2]]
E[2] ← A[2]⊕B[2]⊕ [R[3]⊕R[4]]
F [2] ← B[2]⊕ C[2]⊕ [R[5]⊕R[6]]
G[2] ← C[2]⊕ [R[7]⊕R[8]]

R ← R+ 32

3-share implementation of G

E[0] ← (C[1]&B[0])⊕ (D[1]&B[0])⊕R[4]⊕A[0]⊕ (C[0]&B[0])⊕ (D[0]&B[0])
⊕R[5]⊕ (C[2]&B[0])⊕ (D[2]&B[0])

F [0] ← (A[1]&B[0])⊕R[7]⊕ (A[0]&B[0])⊕D[0]⊕R[8]⊕ (A[2]&B[0])
G[0] ← B[0]
H[0] ← (D[1]&B[0])⊕R[1]⊕ C[0]⊕ (D[0]&B[0])⊕R[2]⊕ (D[2]&B[0])

E[1] ← (C[2]&B[1])⊕ (D[2]&B[1])⊕R[5]⊕A[1]⊕ (C[1]&B[1])⊕ (D[1]&B[1])
⊕R[6]⊕ (C[0]&B[1])⊕ (D[0]&B[1])

F [1] ← (A[2]&B[1])⊕R[8]⊕ (A[1]&B[1])⊕D[1]⊕R[9]⊕ (A[0]&B[1])
G[1] ← B[1]
H[1] ← (D[2]&B[1])⊕R[2]⊕ C[1]⊕ (D[1]&B[1])⊕R[3]⊕ (D[0]&B[1])

E[2] ← (C[0]&B[2])⊕ (D[0]&B[2])⊕R[6]⊕A[2]⊕ (C[2]&B[2])⊕ (D[2]&B[2])
⊕R[4]⊕ (C[1]&B[2])⊕ (D[1]&B[2])

F [2] ← (A[0]&B[2])⊕R[9]⊕ (A[2]&B[2])⊕D[2]⊕R[7]⊕ (A[1]&B[2])
G[2] ← B[2]
H[2] ← (D[0]&B[2])⊕R[3]⊕ C[2]⊕ (D[2]&B[2])⊕R[1]⊕ (D[1]&B[2])

R ← R+ 36

4. Unprotected PRESENT Sbox

The unprotected PRESENT Sbox implementation is our first target, this study will help select the
acquisition parameters, validate the chip leakage strength and observe the leakage areas and then
ease the analysis of the masked implementations (see Sections 5 and 6).

Page 11/42

VERISICC L4.3. Evaluation Report AAP FUI25

4.1. First Observations
As detailed in Section 2.3, our trigger mechanism necessitates to acquire two traces simultaneously:
the Power channel that relates to the power consumption of the chip and the I/O channel that bears
the ISO7816 communication as well as the trig signals before and after each call to the cryptographic
primitive.
This setup allows to request, in a single command to the smartcard, several (say n) computations
of the PRESENT Sbox (see Section 3 for more details on the available APDU commands). Then,
during the post-processing of the two acquired traces, the I/O signal is used to split the power trace
into n subtraces. From the knowledge of the PRNG seed, we can reconstruct the successive inputs
(including the masking material) of the n PRESENT Sbox calls.

In a first experiment, we acquire a maximum number of PRESENT Sbox computations in a single
trace. The acquisition parameters are detailed in Table 1, the sampling rate is chosen following the
characterization study (see deliverable L3.3).

operation Unprotected PRESENT Sbox
equipment PicoScope 6424E, Scaffold
inputs src[0] and src[1] filled with 32 bits fresh randoms
number of operations 170
length 500 ms
sampling rate 1.25GSa/s
samples per trace 625MSamples
channel(s) I/O, Power
channel(s) parameters I/O: DC, voltage range [−5, 5]V

Power: DC, voltage range [−220,−20]mV
file size 1.25GB
acquisition time about 30s

Table 1: Acquisition Parameters Unprotected PRESENT Sbox – First Tentative

Figure 4 displays a single trace (containing 170 PRESENT Sbox successive calls) of the I/O
channel for different levels of zoom. One can clearly see the successive trigger signals that will
provide a very handy way to split the trace. In the last subfigure, the gray boxes represent the actual
PRESENT Sbox computations while the area in between relates to

1. a call to the fromBitslice function that builds the 16 PRESENT Sbox outputs from their
bitsliced format.

2. a comparison of the output to the expected one

3. two PNRG calls (i.e. two iterations of the xorshift96) to refresh the inputs

4. a table-based computation of the PRESENT Sbox to compute the reference output

5. a call to the toBitslice function that sends the 16 PRESENT Sbox inputs into their bitsliced
format.

It results that each PRESENT Sbox computation takes about 200K Samples (i.e. 160 us at 1.25GSam-
ples/s) while the time between two computations takes about 3.2M Samples (i.e. 16 times longer than
the PRESENT Sbox computation itself).

Page 12/42

VERISICC L4.3. Evaluation Report AAP FUI25

Figure 4: Unprotected PRESENT Sbox 170 Operations – I/O Trace – Full Trace (Top) - First Level of
Zoom (Middle) - Second Level of Zoom (Bottom)

The above observation tends to show that for each stored power trace, only a small part will be
useful. Hence, to reduce the storage cost, we modified our acquisition process to apply the splitting
post-process directly on the acquired traces before writing them into a file. That way, we drastically
reduced the size of the power traces but also could get rid of the I/O traces without storing them on
disk.
This online splitting procedure allows to acquire 450 traces (each containing 170 PRESENT Sbox
computations) in a single file of size 23G Bytes (instead of more than 500G Bytes). The parameters
for this acquisition campaign are detailed in Table 2.

Page 13/42

VERISICC L4.3. Evaluation Report AAP FUI25

operation Unprotected PRESENT Sbox
equipment PicoScope 6424E, Scaffold
inputs src[0] and src[1] filled with 32 bits fresh randoms
number of operations 450× 170

length 500 ms
sampling rate 1.25GSa/s
samples per trace 300KSamples
channel(s) Power
channel(s) parameters I/O: DC, voltage range [−5, 5]V

Power: DC, voltage range [−220,−20]mV
file size 23GB
acquisition time about 4h

Table 2: Acquisition Parameters Unprotected PRESENT Sbox

The resulting power traces are depicted in Figure 5 (and zooming into a small part of the traces
in Figure 6), the second subfigure is the averaged trace over all acquisitions. It shows that select-
ing the external clock was a good choice (see Section 2.1) as it is stable enough to avoid traces
resynchronization.

Figure 5: Unprotected PRESENT Sbox Single Operation – Power Traces – 10 Superposed Traces
(Top) - Averaged over 76500 Traces (Bottom)

Page 14/42

VERISICC L4.3. Evaluation Report AAP FUI25

Figure 6: Unprotected PRESENT Sbox Single Operation – Power Traces Zoom – 10 Superposed
Traces (Top) - Averaged over 76500 Traces (Bottom)

4.2. Leakage Analysis

The implementation under study is detailed in Section 3.2, the four 16-bit bitsliced inputs {A,B,C,D}
are sent to the four 16-bit bitsliced outputs {E,F,G,H}. Our leakage analysis first proceeds with a
SNR evaluation of the bitsliced inputs/outputs at the byte level. In other words, each 16-bit variable
X ∈ {A,B,C,D,E, F,G,H} is divided into two 8-bit variables (XL, XH), and the 8-bit value SNR
is computed for all 16 8-bit variables Xα for α ∈ {L,H}. The results are depicted in Figure 7, where
the first subfigure recalls the averaged trace, the second subfigure shows the 8 univariate SNR re-
sults for the 8 input variables and the last subfigure shows the univariate 8 SNR results for the 8
output variables. For clarity, both 8-bit variables of a single 16-bit variable X are represented with
the same color.

From the input related SNRs (second subfigure) one can follow the successive usage of the input
variables.
The output related SNRs (last subfigure) depict clearly the 4 output variable stores, in the correct
order.

By zooming into the results, one can remark that the 2 8-bit variables of a 16-bit variable leak at
the same time, which makes sense since these two variables are stored in a single 32-bit register
and then accessed and modified simultaneously. Moreover, one can see that the leakage-related
time samples are located in specific time slots in the traces. This will help reduce the traces size in
the next sections. These observations are illustrated with two different levels of zoom in Figures 8
and 9.

Page 15/42

VERISICC L4.3. Evaluation Report AAP FUI25

Figure 7: Unprotected PRESENT Sbox– SNR Results – Average Trace (Top) - SNR {A,B,C,D}
(Middle) - SNR {E,F ,G,H} (Bottom)

Figure 8 is a simple zoom inside the gray area identified in Figure 7, this corresponds to the time
area where the first output variable (E) is stored in memory. This figure illustrates two important
remarks on the traces and their relevant side-channel leakages:

1. the leakages relative to intermediate variables seem to solely appear in a specific area of the
clock cycle (identified in Figure 8 by gray boxes). This remark allows to reduce the size of the
traces and will be crucial for the analysis of the more expensive masked implementations.

2. the leakage related to a single intermediate value (say e.g. E in the last subfigure) spans for
many clock cycles. This can be explained by a combination of factors:

• some instructions (e.g. load and store) take several clock cycles to execute;

• the pipeline length of the OpenCard IC is 3, so that an instruction start being treated
before its real execution;

• the power consumption measurement is global : any register or clock gate activity is cap-
tured. As a side note, one can see that the power information persistence is spread over
several samples but does not overlap over multiple clock cycles.

Page 16/42

VERISICC L4.3. Evaluation Report AAP FUI25

Figure 8: Unprotected PRESENT Sbox– SNR Results Zoom – Average Trace (Top) - SNR
{A,B,C,D} (Middle) - SNR {E,F ,G,H} (Bottom)

Figure 9 zooms in again inside Figure 8, around the highest SNR peak related to E. The leakage
study is now at the bit level and we focus on the output variable here. For each of the 4 output
variables ({E,F,G,H}), 16 Welch’s T-Tests [Wel47] are estimated.

• In the second subfigure, all 16 T-Test results are displayed with same color. It tells us that, at
this point in time, only the output variable E leaks some information (nothing really surprising
here since the other output variables should not have been computed yet).

• In the last subfigure, the same 16 T-Test results are displayed but this time, the color red is
given to the 8 least significant bits of the output variables, while the color blue indicates that the
target bit comes from the 8 most significant bits of an output variable. This result tells us that
the 8 least significant bits of a 32-bit register seem to have a stronger leakage than the next
8 bits. This observation is pretty stable for all the results observed in this study. This is also
aligned with the results of the characterization task (see deliverable L3.3 for more details).

Page 17/42

VERISICC L4.3. Evaluation Report AAP FUI25

Figure 9: Unprotected PRESENT Sbox– bit-wise T-Test Results – Average Trace (Top) - 4 × 16 T-
Tests {E,F ,G,H} (Middle) - 4 × 16 T-Tests {(EL, EH), (FL, FH), (GL, GH), (HL, HH)} (Byte 0
vs. Byte 1) (Bottom)

5. 2-Share PRESENT Sbox

Thanks to the preliminary leakage analysis of the unprotected PRESENT Sbox implementation de-
tailed in the previous section, we can now move to the first masked implementation of PRESENT
Sbox. We here first present the acquisition campaign as well as the resulting traces before going into
the details of the leakage analysis.

5.1. Acquisition Campaign
As in Section 4.1, our first experiment acquires a single power trace that contains a maximum number
of computations (i.e. filling the oscilloscope memory). Due to the length of the computation and the
requirement in fresh random for each execution, the length for an Sbox computation is much higher
than for the unprotected case, and then the number of executions that can contain a single trace is
limited to 80, the acquisition parameters are detailed in Table 3.

Page 18/42

VERISICC L4.3. Evaluation Report AAP FUI25

operation 2-Share PRESENT Sbox
equipment PicoScope 6424E, Scaffold
inputs src[0] and src[1] filled with 32-bit fresh randoms

entropy[i] for i ∈ {0, · · · , 7} filled with 32-bit fresh randoms
number of operations 80
length 500 ms
sampling rate 1.25GSa/s
samples per trace 625MSamples
channel(s) I/O, Power
channel(s) parameters I/O: DC, voltage range [−5, 5]V

Power: DC, voltage range [−220,−20]mV
file size 1.25GB
acquisition time about 30s

Table 3: Acquisition Parameters 2-Share PRESENT Sbox – First Tentative

Figure 10 displays the I/O channel of 80 successive executions of the 2-share PRESENT Sbox.
It tells us that the computation length of a single PRESENT Sbox is now about 850K Samples (i.e.
680 us at 1.25GSamples/s, more than a factor 4 compared to the unprotected implementation).
The length between two PRESENT Sbox calls takes now about 6M Samples (mostly fresh random
generation from 12 PRNG calls).

Figure 10: 2-Share PRESENT Sbox 80 Operations – I/O Trace – Full Trace (Top) - Zoom in Firsts
Executions (Bottom)

From the above observations, similarly to the unprotected case, we will apply online the post-
processing of dividing the power traces into 80 PRESENT Sbox computations and then reduce dras-
tically the side-channel traces storage. The full acquisition campaign parameters are given in Table 4,
in total 5000× 80 PRESENT Sbox computations are observed for a total storage size of 360G Bytes
and about 45h of acquisition.

Page 19/42

VERISICC L4.3. Evaluation Report AAP FUI25

operation 2-Share PRESENT Sbox
equipment PicoScope 6424E, Scaffold
inputs src[0] and src[1] filled with 32-bit fresh randoms

entropy[i] for i ∈ {0, · · · , 7} filled with 32-bit fresh randoms
number of operations 5000× 80

length 500 ms
sampling rate 1.25GSa/s
samples per trace 900KSamples
channel(s) Power
channel(s) parameters I/O: DC, voltage range [−5, 5]V

Power: DC, voltage range [−220,−20]mV
file size 360GB
acquisition time about 45h

Table 4: Acquisition Parameters 2-Share PRESENT Sbox

Figure 11 displays the resulting power traces of a single PRESENT Sbox execution, the averaged
trace over the whole 400K traces shows clearly that resynchronization is not necessary. The resulting
traces are 900K Samples long, we will further reduce these traces to reduce the analysis time.

Figure 11: 2-Share PRESENT Sbox Single Operation – Power Traces – 10 Superposed Traces (Top)
- Averaged over 400K Traces (Bottom)

From the analysis of the leakages observed in the unprotected case (see Figure 8, Section 4.2),
we know that within a clock cycle, only a small part of the time samples are likely to bear any
intermediate variable related leakages. The following figure 12 illustrates our extra post-processing
on the power traces: first detect the center of the leakage area for all clock cycles (first and second
subfigure) and then only keep 300 samples around each center. The resulting reduced traces are
displayed in the last subfigure (for a zoom) and Figure 13 (for the whole averaged trace). The
resulting traces are about 193K Samples long.

Page 20/42

VERISICC L4.3. Evaluation Report AAP FUI25

Figure 12: 2-Share PRESENT Sbox Single Operation – Power Traces with Syncro Points – Average
Trace (Top) - Average Trace Zoom (Middle) - Average Reduced Trace Zoom (Bottom)

Figure 13: 2-Share PRESENT Sbox Single Operation – Power Traces – Average Reduced Trace

5.2. Leakage Analysis
Figures 14 to 18 display the SNR results on the whole acquisition campaign with respect to the 5
intermediate variables that naturally appear from the decomposition A ◦G ◦G ◦ B (see Section 3.3):
the inputs, the output of B, the output of G ◦B, the output of G ◦G ◦B and the output of A ◦G ◦G ◦B.
Each one of these intermediate variables can be represented as 4 16-bit vari-

Page 21/42

VERISICC L4.3. Evaluation Report AAP FUI25

ables (say {A,B,C,D}), each one is stored and manipulated as two shares
{(A[0], A[1]), (B[0], B[1]), (C[0], C[1]), (D[0], D[1])}. Each 16-bit share leads to two 8-bit SNR
computations. Hence each figure depicts the 8 SNRs for the first share (middle subfigure) and for
the second share (last subfigure) for a given intermediate variable.

This analysis of the shares leakage throughout the PRESENT Sbox computation allows to
roughly identify the succession of subfunction executions as illustrated on the figures.

B
Share 1 Share 2

G
Share 1 Share 2

G
Share 1 Share 2

A
Share 1 Share 2

Figure 14: 2-Share PRESENT Sbox Single Operation – SNR Results {A,B,C,D} – Average Re-
duced Trace (Top) - SNR Inputs Share 1 (Middle) - SNR Inputs Share 2 (Bottom)

Page 22/42

VERISICC L4.3. Evaluation Report AAP FUI25

B
Share 1 Share 2

G
Share 1 Share 2

G
Share 1 Share 2

A
Share 1 Share 2

Figure 15: 2-Share PRESENT Sbox Single Operation – SNR Results {A,B,C,D} – Average Re-
duced Trace (Top) - SNR Outputs B Share 1 (Middle) - SNR Outputs B Share 2 (Bottom)

Page 23/42

VERISICC L4.3. Evaluation Report AAP FUI25

B
Share 1 Share 2

G
Share 1 Share 2

G
Share 1 Share 2

A
Share 1 Share 2

Figure 16: 2-Share PRESENT Sbox Single Operation – SNR Results {A,B,C,D} – Average Re-
duced Trace (Top) - SNR Outputs G ◦ B Share 1 (Middle) - SNR Outputs G ◦ B Share 2 (Bottom)

Page 24/42

VERISICC L4.3. Evaluation Report AAP FUI25

B
Share 1 Share 2

G
Share 1 Share 2

G
Share 1 Share 2

A
Share 1 Share 2

Figure 17: 2-Share PRESENT Sbox Single Operation – SNR Results {A,B,C,D} – Average Re-
duced Trace (Top) - SNR Outputs G ◦ G ◦ B Share 1 (Middle) - SNR Outputs G ◦ G ◦ B Share 2
(Bottom)

Page 25/42

VERISICC L4.3. Evaluation Report AAP FUI25

B
Share 1 Share 2

G
Share 1 Share 2

G
Share 1 Share 2

A
Share 1 Share 2

Figure 18: 2-Share PRESENT Sbox Single Operation – SNR Results {A,B,C,D} – Average Re-
duced Trace (Top) - SNR Outputs A ◦G ◦G ◦ B Share 1 (Middle) - SNR Outputs A ◦G ◦G ◦ B Share
2 (Bottom)

In Figure 19, the SNR results relate to the entropy bytes (stored in array R). In the second
subfigure, the same color is used for the 2 bytes of each 16-bit randoms in R: there are 7 such
randoms that are used during the computation, one is consumed during the computation of B and 3
are consumed during each call to G.
The last subfigure is simply a color change, here the red is used to identify the least significant byte of
a random in R while blue indicates the most significant byte. This last result shows (again) well that
the least significant byte has a stronger leakage than the most significant one. Figure 20 is a zoom
into this representation around one of the SNR peaks. One can again observe that, when accessing
a value stored in memory, its manipulation will affect the side-channel trace for many consecutive
clock cycles (see Section 4.2 for similar observations on the unprotected case).

Page 26/42

VERISICC L4.3. Evaluation Report AAP FUI25

B
Share 1 Share 2

G
Share 1 Share 2

G
Share 1 Share 2

A
Share 1 Share 2

Figure 19: 2-Share PRESENT Sbox Single Operation – SNR Results – Average Reduced Trace
(Top) - SNR Entropy (Middle) - SNR Entropy Byte 0 vs. Byte 1 (Bottom)

Figure 20: 2-Share PRESENT Sbox Single Operation – SNR Results – SNR Entropy Byte 0 vs. Byte
1 Zoom

5.3. A Sensitive Leakage
The above analysis studies the leakage related to the shares of the intermediate variables, it gives us
a good understanding of the leakage and allows to identify the various subfunction executions. We

Page 27/42

VERISICC L4.3. Evaluation Report AAP FUI25

now look for sensitive variables (i.e. un-masked intermediate variables) that might leak despite the
masking scheme. This analysis, throughout all simple (i.e. without considering Hamming Distance
model) intermediate variables, showed a single leakage associate to a sensitive variable. It can be
observed on the SNR results related to the bitsliced output of G◦G◦B (i.e. the input to A). Figure 21
displays this SNR result:

• for the whole trace (second subfigure) where the inputs to A computation, say the 16-bit vari-
ables {A,B,C,D} are colored in red, blue, green and purple respectively. It tells us that only
the input variable A is leaking.

• around the SNR peak (last subfigure) where the least significant byte of A is in red while the
most significant byte is in blue. It says that this sensitive variable leaks the very same way than
any other variables (the least significant byte leakage is stronger).

Figure 21: 2-Share PRESENT Sbox Single Operation – SNR Results – Average Reduced Trace
(Top) – SNR Output G ◦ G ◦ B (Middle) – SNR Output G ◦ G ◦ B Byte 0 vs. Byte 1 Zoom (Bottom)

Thanks to the analysis of the shares in the previous section, it is easy to identify the leakage
position inside the PRESENT Sbox execution. Figure 22 illustrates this identification: the leakage
occurs inside the A execution, right before the second share variables are computed.

Page 28/42

VERISICC L4.3. Evaluation Report AAP FUI25

B
Share 1 Share 2

G
Share 1 Share 2

G
Share 1 Share 2

A
Share 1 Share 2

Figure 22: 2-Share PRESENT Sbox Single Operation – SNR Results – Average Reduced Trace
(Top) - SNR Output G◦G◦B (Second) - SNR Output G◦G◦B Share 1 (Third) - SNR Output G◦G◦B
Share 2 (Bottom)

Figure 23 zooms in around the sensitive variable SNR peak, it gives a good reason why this
sensitive leakage appears: at the same time both shares of input A (A[0] and A[1]) are leaking. The
combination of these two leakages produces the leakage associated to the unmasked A. Remark
that, at the leakage time position, all A[0], A[1] and A have comparable leakage strength.

Page 29/42

VERISICC L4.3. Evaluation Report AAP FUI25

A[1]

A[0]

A

Figure 23: 2-Share PRESENT Sbox Single Operation – SNR Results Zoom Level 1 – Average
Reduced Trace (Top) - SNR Output G ◦ G ◦ B (Second) - SNR Output G ◦ G ◦ B Share 1 (Third) -
SNR Output G ◦ G ◦ B Share 2 (Bottom)

Now that the leakage time position is well estimated, we can look at the asm code of A to better
understand why this unexpected leakage appears. The following snippet of code was extracted from
the study material provided with this document 6. With annotations, it indicates the likely position
of the leakage (in red). The sensitive leakage appears during the manipulation of A[1], its second
share. The first share A[0] is however not manipulated at this point but was loaded into register r4
(and never erased from it) at the very beginning of A (first LDR instruction). The register r4 will be
loaded with a new value few instructions after the sensitive leakage occurs. We can make the hy-
pothesis that this sequence of events creates the sensitive leakage. Without more experiments and

6L4.3_evaluation_sources.tgz

Page 30/42

VERISICC L4.3. Evaluation Report AAP FUI25

more information about the OpenCard IC design, it is not possible to have a more precise analysis
of leakage source. However, one can safely conclude that such very specific leakages are far from
being taken into account when designing a masking scheme. Our example here shows how disas-
trous the result can be.

It can be observed however that the unintended leakage appears due to a specific combination
of events (the manipulation of r4 containing A[0] close enough to the loading of A[1]). A deeper
analysis of this phenomenon might well conclude that this should not appear very often (and indeed
we did not found another similar leakage in the rest of the implementation).

Interestingly enough, a leakage assessment of this exact implementation was done in [BGG+21]
on two CM0+ MCUs (FRDM-KL82Z, STM32L073RZ) and concluded in the absence of sensitive
leakages. But the OpenCard is actually based on a SC 100 MCU, the two architectures must have
many differences (CM0+ is based on ARMv6-M architecture, while SC100 is based on ARMv4T
architecture). For instance, the fact that the CM0+ possesses a 2-staged pipeline while the SC100
has a 3-staged pipeline might give some sense to this unintended leakage appearing solely on the
OpenCard .

Page 31/42

VERISICC L4.3. Evaluation Report AAP FUI25

;; calcAOrder1(
;; uint32_t *entropy ,
;; uint32_t outputs [4][2] ,
;; uint32_t inputs [4][2]
;;)
;; r0 entropy ptr , r1 *outputs , r2 *inputs
calcAOrder1

PUSH {r4 , r5, r6, lr}
LDR r4 , [r2 , #0]
STR r4 , [r1 , #16]
LDR r5 , [r2 , #16]
EORS r5 , r4
STR r5 , [r1 , #0]
MVNS r5 , r5
LDR r6 , [r2 , #24]
EORS r5 , r6
STR r5 , [r1 , #24]
LDR r5 , [r2 , #8]
MVNS r5 , r5
STR r5 , [r1 , #8]
;; second share
LDR r5 , [r2 , #4]
STR r5 , [r1 , #20]
ADDS r3 , r0, r1 ;; clear(opB)
LDR r4 , [r2 , #20]
ANDS r0 , r0 ;; clear(opB)
EORS r4 , r5
STR r4 , [r1 , #4]
ANDS r0 , r0 ;; clear(opB)
LDR r5 , [r2 , #28]
ANDS r0 , r0 ;; clear(opB)
EORS r4 , r5
STR r4 , [r1 , #28]
LDR r5 , [r2 , #12]
STR r5 , [r1 , #12]
ANDS r0 , r0 ;; clear(opA), clear(opB)
STR r0 , [r0 , #0] ;; clear(opW)
POP {r4 , r5 , r6, pc} ;; scrub(r4), scrub(r5), scrub(r6)

G[0]← A[0]

E[0]← C[0]⊕A[0]

H[0]← C[0]⊕A[0]⊕ 0xFFFFFFFF ⊕D[0]

F [0]← B[0]⊕ 0xFFFFFFFF

G[1]← A[1]

E[1]← C[1]⊕A[1]

H[1]← C[1]⊕A[1]⊕D[1]

F [1]← B[1]

A[0]⊕A[1]

6. 3-Share PRESENT Sbox

This section is dedicated to the analysis of 3-share implementation of the PRESENT Sbox (see
Section 3.4). We will first present the acquisition campaign as well as the resulting traces before
going into the details of the leakage analysis.

6.1. Acquisition Campaign
As for the other implementations, our first experiment allows to choose the maximum number of
successive PRESENT Sbox computations that can fit in a single power trace. The acquisition pa-
rameters for this experiment are detailed in Table 5, this time only 50 computations fit into the trace
(i.e. in the oscilloscope memory). Figure 24 display the I/O trace, it shows that:

Page 32/42

VERISICC L4.3. Evaluation Report AAP FUI25

• a single PRESENT Sbox computation takes about 1.4M samples, i.e. 1.1 ms at 1.25GSam-
ples/s

• the random generation between two computations takes about 9.5M samples

operation 3-Share PRESENT Sbox
equipment PicoScope 6424E, Scaffold
inputs src[0] and src[1] filled with 32 bits fresh randoms
entropy[i] for i ∈
{0, · · · , 67} filled with 32
bits fresh randoms
number of operations 50
length 500 ms
sampling rate 1.25GSa/s
samples per trace 625MSamples
channel(s) I/O, Power
channel(s) parameters I/O: DC, voltage range [−5, 5]V

Power: DC, voltage range [−220,−20]mV
file size 1.25GB
acquisition time about 30s

Table 5: Acquisition Parameters 3-Share PRESENT Sbox – First Tentative

Figure 24: 3-Share PRESENT Sbox 80 Operations – I/O Trace – Full Trace (Top) - Zoom in Firsts
Executions (Bottom)

As detailed in Section 5.1 for the 2-share version, we process the trace splitting online, then
only storing the interesting part of the power traces. Table 6 sums up the acquisition campaign
parameters, thanks to our online processing we can acquire a total of 10000 × 50 PRESENT Sbox

Page 33/42

VERISICC L4.3. Evaluation Report AAP FUI25

computations in about 5 days, the resulting file is about 800G Bytes. Figure 25 depicts the resulting
traces and shows that no resynchronization is necessary.

operation 3-Share PRESENT Sbox
equipment PicoScope 6424E, Scaffold
inputs src[0] and src[1] filled with 32 bits fresh randoms
entropy[i] for i ∈
{0, · · · , 67} filled with 32
bits fresh randoms
number of operations 10000× 50

length 500 ms
sampling rate 1.25GSa/s
samples per trace 1.6MSamples
channel(s) Power
channel(s) parameters I/O: DC, voltage range [−5, 5]V

Power: DC, voltage range [−220,−20]mV
file size 800GB
acquisition time about 115h

Table 6: Acquisition Parameters 3-Share PRESENT Sbox

Figure 25: 3-Share PRESENT Sbox Single Operation – Power Traces – 10 Superposed Traces (Top)
- Averaged over 400K Traces (Bottom)

Similarly to the 2-share implementation, the traces are further reduced to contain only the part
of the clock cycles that bear side-channel leakages. The procedure is exactly the same and is
summarized in Figure 26. The length of the traces is reduced from 1.6M samples to 352K samples.
Figure 27 shows the resulting averaged trace over the 500K traces.

Page 34/42

VERISICC L4.3. Evaluation Report AAP FUI25

Figure 26: 3-Share PRESENT Sbox Single Operation – Power Traces with Syncro Points – Average
Trace (Top) - Average Trace Zoom (Middle) - Average Reduced Trace Zoom (Bottom)

Figure 27: 3-Share PRESENT Sbox Single Operation – Power Traces – Average Reduced Trace

6.2. First-Order Leakage Analysis
Thanks to our knowledge of the masking material, we first study the leakage of the intermediate
variable shares. For each input/output of the subfunctions A,B,G calls, we evaluate the two 8-bit
SNR of each of the three shares. Results are depicted on Figure 28 to 32. This analysis allows a
timing identification of the sequence of subfunction executions, as illustrated on the figures.

Page 35/42

VERISICC L4.3. Evaluation Report AAP FUI25

B
Share 1Share 2 Share 3

G
Share 1 Share 2 Share 3

G
Share 1 Share 2 Share 3

A
Share 1Share 2Share 3

Figure 28: 3-Share PRESENT Sbox Single Operation – SNR Results {A,B,C,D}– Average Re-
duced Trace (Top) - SNR Inputs Share 1 (Second) - SNR Inputs Share 2 (Third) - SNR Inputs Share
3 (Bottom)

Page 36/42

VERISICC L4.3. Evaluation Report AAP FUI25

B
Share 1Share 2 Share 3

G
Share 1 Share 2 Share 3

G
Share 1 Share 2 Share 3

A
Share 1Share 2Share 3

Figure 29: 3-Share PRESENT Sbox Single Operation – SNR Results {A,B,C,D}– Average Re-
duced Trace (Top) - SNR Outputs B Share 1 (Second) - SNR Outputs B Share 2 (Third) - SNR
Outputs B Share 3 (Bottom)

Page 37/42

VERISICC L4.3. Evaluation Report AAP FUI25

B
Share 1Share 2 Share 3

G
Share 1 Share 2 Share 3

G
Share 1 Share 2 Share 3

A
Share 1Share 2Share 3

Figure 30: 3-Share PRESENT Sbox Single Operation – SNR Results {A,B,C,D}– Average Re-
duced Trace (Top) - SNR Outputs G ◦ B Share 1 (Second) - SNR Outputs G ◦ B Share 2 (Third) -
SNR Outputs G ◦B Share 3 (Bottom)

Page 38/42

VERISICC L4.3. Evaluation Report AAP FUI25

B
Share 1Share 2 Share 3

G
Share 1 Share 2 Share 3

G
Share 1 Share 2 Share 3

A
Share 1Share 2Share 3

Figure 31: 3-Share PRESENT Sbox Single Operation – SNR Results {A,B,C,D}– Average Re-
duced Trace (Top) - SNR Outputs G ◦ G ◦ B Share 1 (Second) - SNR Outputs G ◦ G ◦ B Share 2
(Third) - SNR Outputs G ◦G ◦B Share 3 (Bottom)

Page 39/42

VERISICC L4.3. Evaluation Report AAP FUI25

B
Share 1Share 2 Share 3

G
Share 1 Share 2 Share 3

G
Share 1 Share 2 Share 3

A
Share 1Share 2Share 3

Figure 32: 3-Share PRESENT Sbox Single Operation – SNR Results {A,B,C,D}– Average Re-
duced Trace (Top) - SNR Outputs A ◦ G ◦ G ◦ B Share 1 (Second) - SNR Outputs A ◦ G ◦ G ◦ B
Share 2 (Third) - SNR Outputs A ◦G ◦G ◦B Share 3 (Bottom)

Now that the side-channel identification of the different parts of the execution is done, we study
the unintended leakages, and first the unmasked intermediate variables. This study amounts to
target each of the input/output variables of the subfunctions and study their leakage:

• the SNR analysis of the 4 bitsliced inputs/outputs {A,B,C,D}: these values are on 16 bits and
then, as before, two 8-bit SNRs are estimated (the eight 8-bit SNRs are computed in about 1.5
hours, the whole SNR computation for all intermediate variables takes then about 7.5 hours)

• the SNR analysis of the 16 inputs/outputs of the PRESENT Sbox: these values are on 4

Page 40/42

VERISICC L4.3. Evaluation Report AAP FUI25

bits (the 16 4-bit SNRs are computed in about 3.5 hours. There is a bijection between each
intermediate variables, then focusing on the inputs of B is enough to study the whole execution)

• the T-Test analysis of each bit individually of the bitsliced inputs/outputs {A,B,C,D}. There
are, at each step of the computation, 64 such T-Test to compute (the 64 1-bit T-Tests are
computed in about 7 hours, the whole SNR computation for all intermediate variables takes
then about 35 hours)

None of the above leakage assessment could identify any significant sensitive leakage (contrarily to
the 2-share implementation, see Section 5.3).

6.3. Second-Order Leakage Analysis
Looking for 2nd-order leakages, and then fully validate/invalidate the practical robustness of the 3-
share implementation on the OpenCard is a bit more complicated than looking for 1st-order leakages.
And, as we will see, a complete analysis is not possible within the scope of this study (for time and/or
computational power limitations).

The first thing to check is univariate 2nd-order leakages. To this end, we simply have to re-
compute the SNRs listed above on the side-channel traces where the 2nd statistical moment has
been exposed: the averaged trace is subtracted from each trace and the result of squared (sample-
wise).
As for the 1st-order leakage assessment, none of the SNR results show significant sensitive leakage.

Now, considering multivariate 2nd-order leakages, we should conduct the above analysis over
the traces where all bi-variate 2nd statistical moments are exposed, i.e. where all pairs of sam-
ples are combined (usually using the centered product combination function). This re-combination
could be done by only considering small windows where the 3 shares of an intermediate variable
are manipulated. But even that way, this re-combination would inflate the trace length so much that
the SNRs computation would be done in a reasonable amount of time (see the timings for the SNR
computation in previous Section, they should be multiplied by a factor 10K to 100K for reasonable
window sizes).

In our setup however, we can simplify the analysis: let us consider an intermediate variable X,
shared as (X[0], X[1], X[2]), we can study the leakage related to the combination of any pairs of
shares. For 0 ≤ i < j ≤ 2, if a 1st-order leakage related to X[i] ⊕ X[j] is found, then a bivariate
2nd-order leakage can be easily built from the time samples where the last share leaks. This trick
reduces the spectrum of 2nd-order leakages that can be detected but it would cover unintended
leakages such as the one found in Section 5.3.
The full SNRs computation for each intermediate variable and each pair of shares was conducted (for
all 8-bit SNRs, 4-bit SNRs and 1-bit T-Tests): no significant leakage was detected. This experiment
concludes the leakage assessment of the 3-share implementation.

As mentioned in Section 5.3, the observed sensitive leakage in the 2-share implementation ap-
pears because the leakage model of the chip was not known by the developers, but the appearance
of this unexpected collision of register values might not happen very often. And as a matter of fact, it
does not seem to occur in the 3-share implementation.

Page 41/42

VERISICC L4.3. Evaluation Report AAP FUI25

References

[Bei] Beijing ChipCity Technology Co., Ltd. . CC32RS512 Contact Smart Card Chip User
Manual.

[BGG+21] Gilles Barthe, Marc Gourjon, Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga, and
Lars Porth. Masking in fine-grained leakage models: Construction, implementation and
verification. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2021(2):189–228, 2021.

[Led] Ledger SAS. Scaffold. https://github.com/Ledger-Donjon/scaffold.

[Mar03] George Marsaglia. Xorshift rngs. Journal of Statistical Software, 8(14):1–6, 2003.

[Pic19] Pico Technology. PicoScope 6000E Series datasheet. https://www.picotech.com/
download/manuals/picoscope-6000e-series-data-sheet.pdf, 2019. [online; ac-
cessed 04-Nov-2020].

[Wel47] B. L. Welch. The Generalization of ‘Student’s’ Problem when Several Different Population
Variances are Involved. Biometrika, 34(1/2):28–35, 1947.

Page 42/42

https://github.com/Ledger-Donjon/scaffold
https://www.picotech.com/download/manuals/picoscope-6000e-series-data-sheet.pdf
https://www.picotech.com/download/manuals/picoscope-6000e-series-data-sheet.pdf

	Introduction
	Device Under Test
	Product Presentation
	Side-Channel Setup
	Trigger Mechanism

	Implementations
	Internal Pseudo-Random Generator
	Unprotected PRESENT Sbox
	2-Share PRESENT Sbox
	3-Share PRESENT Sbox

	Unprotected PRESENT Sbox
	First Observations
	Leakage Analysis

	2-Share PRESENT Sbox
	Acquisition Campaign
	Leakage Analysis
	A Sensitive Leakage

	3-Share PRESENT Sbox
	Acquisition Campaign
	First-Order Leakage Analysis
	Second-Order Leakage Analysis

