ZISYSTEMATIC

PARIS REGION SYSTEMS & ICTCLUSTER @ w = & =

VeriSiCC
Deliverable L4.1-4.2
Test Vectors

CALL: FUI25
NAME OF THIS PROJECT: VERISICC

Leader of this deliverable
« Partner: IDEMIA
» Contact name: Aurélien Greuet

+ Contact information: aurelien.greuet@idemia.com

Leader of the project
» Company: CryptoExperts
+ Contact name: Sonia Belaid

« Contact information: sonia.belaid@cryptoexperts.com, 06 68 75 30 66

Partners
» SMEs: CryptoExperts and NinjaLab
 Big Business: IDEMIA

+ Public Institutions: INRIA, ANSSI, and Université du Luxembourg

Version : 1.0

VERISICC L4.1-4.2: Test vectors AAP FUI25

Table of contents

w

1 Introduction
1.1 PUrPOSe o e
1.2 Notations e,

w w

2 Implementation choices
2.1 Algorithm o e
22 Target
2.3 Security Order e e

L

3 PRESENT S-Box Implementations
3.1 Unprotected LUT Implementation
3.2 Inria Unprotected Bitsliced Implementation
3.2.1 Data Representation
3.3 Tornado Implementation
3.3.1 Tool Description e
3.3.2 MaskingOrder e
3.3.3 Data Representation
3.3.4 Random Generation
3.4 Inria Implementation
3.4.1 Tool Description
3.4.2 MaskingOrder e
3.4.3 DataRepresentation
3.4.4 Random Generation

[epRNe >IN IS, NG, NG, BNS NG, NG IS, NG IIF NN N -

4 Test Vectors Description
4.1 Harmonization e e
4.2 Masking Order e e e e e e e
4.3 Data Representation
44 Random Generation e e e e

0O NNO O

Page 2/9

VERISICC L4.1-4.2: Test vectors AAP FUI25

1. Introduction

1.1. Purpose

This deliverable describe the test vectors developed and used for tasks 4.1 and 4.2. Since these
tasks overlap on some points, we decide to write one deliverable for both.

Test vectors were developed to estimate the practical security provided by the tools from SPS3.
These tests are implementations of cryptographic primitives, designed for embedded systems like
smartcards. These implementations are verified or generated by automatic tools. Thus, they are
expected to be secure in a specified model, e.g. probing model. However, because of leakages
coming from the device, on which we have no control, the practical security must be assessed too.

To this end, we propose several implementations of the same S-Box, at several sharing orders.
These implementations rely on different theoretical models.

In addition, we develop wrappers to harmonize the random management and data representation
between implementations. As a result, the functions to call the different implementations have the
same signature, and exact same inputs/outputs can be used for any implementation. Switching
between implementations is then very convenient.

Moreover, the masking order is set as a parameter instead of being hardcoded. Hence, test
vectors and S-Box routines can be loaded to the smartcard once for all to test all supported orders.

1.2. Notations

In the sequel, we will consider some bitslice implementations of PRESENT S-Boxes. Their inputs
and outputs have to be in a specific format. Let x be a 64-bit PRESENT state, viewed as 16 4-bit
nibbles, where the i-th nibble is b)) b’ b} S :

x = bbb b bibi b bE - biA DI BAt BIt bL% b1P BIO bA° .

Let S(z) be the output of PRESENT S-Box for input value x and b, b b b} be its i-th nibble:

S(x) = 0000 b6 bEbIbYbY - DEBIBLA b bL5 pI5 bLP b5

A bitslice implementation takes as input the following 4 16-bit values, referred in the sequel as
the bitslice format:

« 1o =DbJ b b3 --- by b (bits at position 0 in each input nibble)
e r1 =b{blb? --- b1 b1® (bits at position 1 in each input nibble)
e ro = bJbIb3 ---bi b (bits at position 2 in each input nibble)
« r3=0b3bi03 --- b bL5 (bits at position 3 in each input nibble)
and outputs:
s T = z{q b% l;?) - I%Z* l%’ (bits at position 0 in each output nibble)
= I;fl) bN% l;% - b?‘ l%) (bits at position 1 in each output nibble)
* Ty = 52 bg l;% - 554 b?’ (bits at position 2 in each output nibble)

* 3= bNg bw},, l% - b? bng’ (bits at position 3 in each output nibble)

Page 3/9

VERISICC L4.1-4.2: Test vectors AAP FUI25

2. Implementation choices

2.1. Algorithm

We chose to implement the PRESENT S-Box. This is a 4-bit to 4-bit S-Box, applied 16 times in
parallel to each 4-bit nibbles of the 64-bit state.

Since it is lightweight and has a simple algebraic structure, formal methods for the verification
or generation of countermeasures are expected to be runnable with PRESENT. On the contrary,
it could require too much memory and/or could be too time-consuming to deal with more complex
cryptographic primitives.

2.2. Target

The tests are developed for ARM Cortex-M3. This CPU family is used in most of current smartcards
and secure elements. In particular, ARM Cortex-M3 based components are used in products like
bank cards, passports, ID cards, SIM cards, eUICC, connected devices (watch, automotive), etc.

2.3. Security Order

We decided, as a first step, to restrict the test vectors to implementations secure at first and second
order only.

This restriction makes the tests easier to develop and deploy. Moreover, it allows to quickly get
feedbacks from the practical evaluation.

Higher orders can still be developed in a second step, taking into accounts feedbacks from the
first and second order evaluation.

3. PRESENT S-Box Implementations

3.1. Unprotected LUT Implementation

A naive implementation, without countermeasures against side-channel attacks, is provided. It is
used to verify the correctness of more complex implementations. It can also be used to mount a 1st
order attack, proving the need to protect such implementations.

This algorithm relies on the following look-up table, describing the outputs of the PRESENT S-
Box:

SBox[16] = {0xC, 0x5, 0x6, OxB, 0x9, 0x0, OxA, 0xD,
0x3, OxE, OxF, 0x8, 0x4, 0x7, Oxl, 0x2};

Then, a 64-bit input is viewed as the concatenation of 16 4-bit nibbles ngn; ...n;5. The table is
used to compute the output ror; ... r15, where each r; = SBox[n,].

3.2. Inria Unprotected Bitsliced Implementation

This implementation of the PRESENT S-Box is provided by Inria. This is a bitsliced implementation
without masking. It is used as a reference implementation to compare with masked implementation.
The code is given in C language.

Page 4/9

VERISICC L4.1-4.2: Test vectors AAP FUI25

3.2.1. Data Representation
The function computing the S-Box takes as parameters:

» two [4] arrays of 32-bit numbers. The first one is used to store the result and the second one
contains the input. Inputs and outputs are both bitslice format.

3.3. Tornado Implementation

3.3.1. Tool Description

Tornado is a compiler producing masked bitsliced implementations proven secure in the bit/register
probing model. It was introduced in [BDM™20].

C code was generated by Tornado from an Usuba PRESENT S-Box implementation. The Usuba
source code comes from the file Tornado/src/usuba/samples/usuba/present.ua, available at
https://github.com/CryptoExperts/Tornado.

The C code was generated in the register probing model, n-sliced (using -V option).

Tornado can’t generate ARM Cortex-M3 assembly code. However, the assembly code generated
by the ARM C compiler from the C code output by Tornado is very close to "handwritten" assembly
code. Hence, the C code can be used without further specific optimization or additional countermea-
sure.

3.3.2. Masking Order

The code coming from Tornado is fully generic and can work at any order. The order is specified with
a C preprocessor #define macro.

3.3.3. Data Representation

The function computing the S-Box takes 8 pointers as parameters:

* X3, X2, X1, X0: arrays of size MASKING_ORDER+1 containing the inputs in bitslice format: each
Xi contains the MASKING_ORDER+1 shares representing the i-th bits of input.

* Y3, Y2, Y1, YO: arrays of size MASKING_ORDER+1 where the outputs are stored in bitslice format
like the input above.
3.3.4. Random Generation

The fresh random needed in ISW multiplications and share refreshes is obtained by calling the
get_random function. This routine returns a 32-bit random number. By default, it relies on the C
library rand () function, but it can be modified to use other sources of random, like hardware RNG.

3.4. Inria Implementation

3.4.1. Tool Description

This implementation of PRESENT comes from [BGG*21]. It has been formally verified by the
scVerif tool, an adaption of maskVerif [BBC'19] able to take into account device-specific leak-
age effects.

The code is given in ARM Cortex-M0+ assembly language, that is a subset of ARM Cortex-M3.
Hence, such a code can be used without modification on our target.

Page 5/9

https://github.com/CryptoExperts/Tornado

VERISICC L4.1-4.2: Test vectors AAP FUI25

3.4.2. Masking Order

The code is not generic, each order of masking is given as a specific function. For the tests, we
consider 2 functions: one to compute PRESENT S-Box secure at order 1, and the other for order 2.

3.4.3. Data Representation

Order 1. The function computing the S-Box protected against first order attacks takes as parame-
ters:

 a pointer to random data that will be used to pick fresh random numbers,

» two [4] [2] arrays of 32-bit numbers. The first one is used to store the result and the second
one contains the input. Inputs and outputs are both represented with 2 shares, both in bitslice
format.

Order 2. The function computing the 2nd order S-Box takes as parameters:
* a pointer to random data that will be used to pick fresh random numbers,

 two [4] [3] arrays of 32-bit numbers. The first one is used to store the result and the second
one contains the input. Inputs and outputs are both represented with 3 shares, all three in
bitslice format.

3.4.4. Random Generation

The fresh random used in ISW multiplications, refreshes and scrubbing is accessed with the pointer
given as first parameter. It must be filled with enough random before entering the S-Box function.
For order 1, 8 random numbers of 32 bits are needed. For order 2, 27 random numbers of 32 bits
are used.

4. Test Vectors Description

4.1. Harmonization

In the sequel, we explain the choices made for the tests. In particular, we harmonize the random
management and data representation, so that the same set of inputs/outputs can be used, regardless
of the underlying S-Box implementation.

As a result, we provide two test functions, test_present_2shares, for first order implementa-
tions, and test_present_3shares, for second order implementations. These functions take as input
a function pointer presentOrderl (resp. presentOrder?2), expected to be a bitslice implementation
of the PRESENT S-Box at the given order.

Both test functions perform the following:

« Test the correctness of the S-Box computation with the fixed input 0x0123456789ABCDEF:

— Compute the expected output using the unprotected LUT implementation

— Split the input into 2 shares (resp. 3 shares). To this end, 1 (resp. 2) 64-bit random is
generated as the first share (resp. the first and second shares), the second (resp. the
third) being the xor of the input and the first one (resp. the xor of the input and the xor of
the first two shares).

Page 6/9

VERISICC L4.1-4.2: Test vectors AAP FUI25

Transform the shares to bitslice format

Call the input function presentOrder1 (resp. presentOrder2) with the shares in bitslice
format

Transform back the output shares from bitslice to standard format

Recombine the output shares and compare the result with the expected output.

« Test the correctness of the S-Box computation with random inputs. The same steps as with
the fixed input are performed. This is done 255 times.

4.2. Masking Order

We chose to first implement tests for first and second order PRESENT S-Box.

Inria implementations are used without modification.

Since the masking order with Tornado code is specified with a C preprocessor #define macro,
changing the masking order can’t be done dynamically: the #define has to be changed, the code
re-compiled and the binary re-loaded to the smartcard target.

To keep a generic code for multiple orders, we replaced the preprocessor macros with parame-
ters. Then, the same function can be called to compute the S-Box with data split in either 2 shares
or 3 shares, without re-compilation. Hence, the code has to be loaded only once into our target, but
can be used to test both order 1 and order 2.

4.3. Data Representation

We chose to use the same data representation as the Inria implementation:

Order 1. The function computing the S-Box protected against 1st order attacks takes as parame-
ters:

* a pointer to random data that will be used to pick fresh random numbers,

» two [4] [2] arrays of 32-bit numbers. The first one is used to store the result and the second
one contains the input. Inputs and outputs are both represented with 2 shares, in bitslice
format.

Order 2. The function computing the 2nd order S-Box takes as parameters:
+ a pointer to random data that will be used to pick fresh random numbers,

 two [4] [3] arrays of 32-bit numbers. The first one is used to store the result and the second
one contains the input. Inputs and outputs are both represented with 3 shares, in bitslice
format.

Inria code doesn’t need modification, but Tornado implementation has to be adapted to handle
this representation. To do so while keeping the exact same S-Box algorithm, a wrapper is used.
Since the wrappers for order 1 and 2 are similar, we only give a description of the order 1 wrapper .
Let sbox__V1 be the Tornado S-Box. It takes as input 8 pointers X3, X2, X1, X0, Y3, Y2, Y1, YO. The
Yi’s will contain the result while the Xi’s contain the input values.

Hence, given two arrays input [4] [2] and output [4] [2] following Inria data format, our wrap-
per calls sbox__V1 with

Page 7/9

VERISICC L4.1-4.2: Test vectors AAP FUI25

* X3 = input [0] * Y3 = output [0]
* X2 = input[1] * Y2 = output [1]
* X1 = input[2] * Y1 = output [2]
* X0 = input [3] * YO = output [3]

The modification to handle the random data is described in the next section.

4.4. Random Generation

We chose to get the fresh random through a pre-filled buffer, whose pointer is given as input param-
eter, instead of calling a function.

This choice provides a more flexible management of random numbers. In particular, the following
scenarios, that are relevant for a characterization or evaluation process, can very easily be achieved:

* replay the exact same sequence of random numbers from one execution to another,
* replay the exact same sequence of random numbers to different implementations,

+ give to the algorithm a sequence of "bad" random numbers, e.g. with some bias.

Page 8/9

VERISICC L4.1-4.2: Test vectors AAP FUI25

References

[BBCT19] G. Barthe, S. Belaid, Gaétan Cassiers, Pierre-Alain Fouque, B. Grégoire, and Frangois-
Xavier Standaert. maskVerif: Automated Verification of Higher-Order Masking in Pres-
ence of Physical Defaults. In ESORICS, 2019.

[BDM+20] Sonia Belaid, Pierre-Evariste Dagand, Darius Mercadier, Matthieu Rivain, and Raphaél
Wintersdorff. Tornado: Automatic Generation of Probing-Secure Masked Bitsliced Im-
plementations. In Anne Canteaut and Yuval Ishai, editors, Advances in Cryptology —
EUROCRYPT 2020, pages 311-341, Cham, 2020. Springer International Publishing.

[BGG'21] Gilles Barthe, Marc Gourjon, Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga, and
Lars Porth. Masking in Fine-Grained Leakage Models: Construction, Implementation and
Verification. IACR Transactions on Cryptographic Hardware and Embedded Systems,
2021(2):189-228, Feb. 2021.

Page 9/9

	Introduction
	Purpose
	Notations

	Implementation choices
	Algorithm
	Target
	Security Order

	PRESENT S-Box Implementations
	Unprotected LUT Implementation
	Inria Unprotected Bitsliced Implementation
	Data Representation

	Tornado Implementation
	Tool Description
	Masking Order
	Data Representation
	Random Generation

	Inria Implementation
	Tool Description
	Masking Order
	Data Representation
	Random Generation

	Test Vectors Description
	Harmonization
	Masking Order
	Data Representation
	Random Generation

