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1. Introduction

The deliverable L3.3 is the output of VERISICC task T3.3 focusing on the side-channel characteriza-
tion of a chip. Our main goal is to acquire real side-channel leakages of a specific chip and study its
nature as deeply as possible. As far as this is possible, the information gathered will help the design
of efficient masking schemes adapted to this specific chip.

Masking schemes are proven secure in generic and idealistic models, this approach has the
benefit to avoid designing masking schemes for each and every chip that might need to run secure
cryptography. The downside is twofold: the idealistic models might not capture all real leakages (and
then the masking scheme security proofs are worthless) or they might consider leakages that are
not present in practice (and then add unnecessary constraints on the scheme, making it more costly
than really needed).

The recent development of automated masking tools makes it possible to plug real leakage infor-
mation inside the design of a masking scheme itself. The masking scheme will then be re-generated
for each target chip given its real leakage information. For a given target chip this approach would
result in schemes more robust or more efficient, or even both at the same time.

However, the side-channel characterization of a chip is no easy task. The scarce literature on the
subject (see e.g. [MOW17]) shows it well. The study faces two big problems: (1) the complexity of
modern microcontrollers (in terms of number of registers, memory size, instruction sets, etc.) makes
a comprehensive side-channel caratherization barely possible and (2) the Hardware design details
of the vast majority of microcontrollers are not publicly available which greatly complicates the side-
channel analysis and its interpretations.

In the present study we will focus on the OpenCard , details of the target chip as well as the
setup work for side-channel acquisitions are provided in Section 2. To precisely define the scope
of the study, we identified a list of target functions ranging from single instructions to small gadgets
useful in the implementation of masking schemes for symmetric cryptography. The targeted functions
are listed in Section 3 and the source code can be found in the study material provided with this
document 1.

The side-channel setup (especially the trigger setup) as well as the analysis of several millions
of traces showed to be more time consuming than expected and only a small part of the target
implementations were actually studied. We focused on the study of single instructions (Section 4)
as it is the core of the characterization task, then we selected a single gadget to analyse it in depth
(Section 5). The main results and conclusions drawn are sum up below:

• The study of single instructions (surrounded by a fine grain trigger system), detailed in Sec-
tion 4, was conducted on three instructions (namely adds, eors and ands) on 32-bits registers.

– All instructions and register choices show significant leakage of the least significant byte
of the 32-bit inputs/outputs. The 3 most significant bytes seem to induce leakages too
weak to be captured with 2M traces.

– Observed leakages are well modelled by the Hamming Weight.

– The register choice shows to have an impact on the side-channel leakage, we could
identify a configuration when the instruction’s second argument is stored in register r1
that could be of interest for a masking scheme developer.

1L3.3_caracterisation_des_composants_sources.tgz
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– The study of transition leakages from two consecutive instructions over two sets of inde-
pendent registers confirms the necessity to take transition leakages into account when
designing masking schemes for the OpenCard .

• The study of a masked bit-wise AND gadget with 4 shares, detailed in Section 5.

– In this context, a strong leakage related to all 4 bytes of the manipulated registers can
be captured (by opposition to the single instruction case where only the least significant
byte is leaking its value). We could not explain this difference and let for future work the
analysis of this phenomenon.

– The observed side-channel leakage does not bear (as far as we can tell with 2M traces)
information on the xor difference of several bytes inside a single register. Hence, storing
different shares of a sensitive variable in a single register does not seem to be an issue
for the OpenCard .

– Our high-order analysis of the masked bit-wise AND gadget with 4 shares does not show
sensitive leakage. Considering an attacker willing to acquire several millions of side-
channel power traces, the analysis shows that this implementation is robust against a
non-profiled attacker.

2. Device Under Test

2.1. Product Presentation
The device (so called OpenCard or simply DUT in the following) we rely on is a 0.13um 32-bit
Contact Smartcard IC developed by Beijing ChipCity Technology Co., Ltd. [Bei]. The IC has been
EAL4+ certified in Asia (out of the European SOG-IS scheme). It features an ARM core SC 100 with
18 KB of RAM, 8 KB of ROM and 548 KB of FLASH. Figure 1 gives an overview of the IC die and of
the main blocks.

Figure 1: General view of the die after sample opening; mag 50X

The code for this characterisation task is compiled from a Keil simulator using as a target an
ARM7TDMI-S before being uploaded on the OpenCard . The third level of optimization is activated
together with the pre-processing option cpreproc and the interwork qualifier to get ARM/thumb
interworking support.
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The OpenCard offers ISO7816 communication interface and can run on either internal (several
clock frequency are available 3.5/7/9/14/28MHz) or external clock. The clock is configured through
the System Control Register SFR/SCSYS [Bei, 4.2.2], the 28MHz configuration is chosen for the
study to reduce to acquisition time.

2.2. Side-Channel Setup
The NinjaLab acquisition chain is detailed below

• DELL Precision Tower 3420 desktop computer equipped with a 3.6GHz Intel Core i7-7700
processor, 32GB of RAM and a 2TB hard disk drive;

• Pico Technology PicoScope 6424E oscilloscope, with a 500MHz frequency bandwidth, sam-
pling rate up to 5GSa/s, 4 channels and a channel shared memory of 4G samples [Pic19];

• Scaffold board [Led]

The Scaffold board, developed by Ledger, is made for security research on hardware embed-
ded devices. It allows to easily communicate with a smartcard (thanks to its smartcard kit2 and its
ISO7816 module3) and offers a precise measure of the DUT power consumption. The Scaffold setup
is depicted on Figure 2. To simplify our analysis we will focus on power consumption ignoring Elec-
tromagnetic Radiations (EM for short). Indeed EM measurements add a degree of freedom, the EM
probe position, and substantially increase the effort for characterisation (already enormous as we
will see in the following). Hence, for all the study, the reader should not forget that our conclusions
only hold for power consumption and not all side-channels that an adversary might eavesdrop on the
OpenCard .

I/O Trig (on last APDU byte)

Power

OpenCard

Figure 2: General View of the Scaffold Setup

The Scaffold board possesses a simple way to set a trigger signal at the beginning of a specific
APDU transmission. However, our goal here is mainly to observe the side-channel leakage of single
(or few successive) instructions runs which makes the Scaffold trigger functionality useless:

2https://donjonscaffold.readthedocs.io/en/latest/kit_smartcard.html
3https://donjonscaffold.readthedocs.io/en/latest/iso7816_module.html
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• the trigger will be far from what we need to observe (with respect to the target observation
length);

• each and every target execution on the card should be launched by an APDU command (to
set the trigger signal). It will greatly impact the acquisition time as the ISO7816 communication
protocol is pretty slow.

To avoid the above mentioned issues, we developed a custom trigger signal.

2.3. Trigger Mechanism
From the OpenCard datasheet [Bei], the smartcard I/O PIN can be dynamically re-configured as a
GPIO. The idea is then to re-program the I/O PIN as a GPIO during the program execution (poten-
tially executing many target instructions sequences) and send trigger signal before and after each
target execution. Then, program the I/O PIN back to the ISO7816 communication engine to send the
program return value and exit code.

Here is the detailed procedure:

• at card initialisation:

– set the 18th bit of register SCCM0 to 1, leave the other bits unchanged (GPIO ck enable,
see [Bei, 4.2.1])

– set register GPIODIR1 to 0xFFFF00FF (GPIO mode "out", see [Bei, 10.2.4])

• when receiving an APDU command:

– after the APDU is fully received and before processing: set register SCGCON to 0x00000400
(GPIO configuration of the I/O PIN, see [Bei, 4.2.12])

– after processing and before the result APDU is sent: set register SCGCON to 0x00000000
(ISO7816 I/O configuration of the I/O PIN, see [Bei, 4.2.12])

• to send a trig signal:

– before target execution: set register GPIODAT1 to 0xFFFF00FF (drop I/O PIN to low level,
see [Bei, 10.2.3])

– after target execution: set register GPIODAT1 to 0xFFFFFFFF (raise I/O PIN back to high
level, see [Bei, 10.2.3])

Register address desc

SCCM0 0x0F0000 Clock Management Register 0
GPIODIR1 0x0F8C0C GPIO P4 P5 direction control register
SCGCON 0x0F0040 GPIO Enable Register
GPIODAT1 0x0F8C08 GPIO P4 P5 data register

The following asm macros are used to get a square signal around a target execution: TRIG00 is
run right before the execution and TRIGFF is run right after.

;; GPIO P4~P5 data register
#define GPIODAT1 0xF8C08
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;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Macro TRIG00
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

MACRO
TRIG00 $tmp

#ifndef NO_TRIG
ldr $tmp , =GPIODAT1
movs r12 , #0 xFFFF00FF
str r12 , [$tmp]

#endif
MEND

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Macro TRIGFF
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

MACRO
TRIGFF $tmp

#ifndef NO_TRIG
ldr $tmp , =GPIODAT1
movs r12 , #0 xFFFFFFFF
str r12 , [$tmp]

#endif
MEND

An example of the trigger mechanism is given in the following asm code, the target execution is
a single adds instruction.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; EXAMPLE CODE ADD Instruction
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
adds_r0r1

TRIG00 r3
adds r0, r1
TRIGFF r3
bx lr

Figure 3 depicts the side-channel acquisition of the ADD instruction execution. The red signal is
the I/O line while the blue signal is the power consumption of the DUT. We identified by a gray box,
the approximate area where the target instruction is actually executed.

adds r0, r1

TRIG00 r3 TRIGFF r3

Figure 3: First Power Trace on ADD Instruction

3. Implementations

We list here all functions implemented on the OpenCard for the characterization study. All sources
can be found in the study material provided with this document 4.

4L3.3_caracterisation_des_composants_sources.tgz
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3.1. Internal Pseudo-Random Generator
Pseudo-random values are generated with Marsaglia’s xorshift96 pseudo-random generator [Mar03],
initialized with a 48-Byte seed.

Practically, a 256-Byte buffer is filled with pseudo-random at startup, from which random are read
when needed. Every 256 bytes of random, the buffer is filled with 256 bytes of fresh randoms.

3.2. Whitening
Whitening functions are developed in assembly. They can be called from C code, e.g. between calls
to basic instructions or gadgets described below.

• whiten_scratch_registers: set scratch registers r0, r1, r2, r3, r12 to 0, flush pipeline and
wait for all memory accesses to be done.

• whiten_full_stack: flush pipeline, complete all memory accesses and set 0 in stack. The
number of bytes to clean is defined manually with a preprocessor macro.

• whiten_16B_stack: same as whiten_full_stack where 16 B of stack are cleaned.

3.3. Basic Instructions
Basic instructions are assembly functions, instr_rirj, where instr is either adds, eors or ands,
and 0 ≤ i < j ≤ 7. The function instr_rirj performs the instruction instr using registers ri and
rj as input. The result is initially in ri, but is moved to r0 in order to be returned and accessible
from C code.

3.4. Gadgets
The following gadgets are provided, developed in assembly.

• mult_gf256_log_alog: multiplication in Rijndael field using log/alog tables: given a, b ∈
GF(256), it returns a · b.

• mult_2_nosec: insecure multiplication in Rijndael field on 2 shares, without randomness.
Given (a0, a1) , (b0, b1) ∈ GF(256)×GF(256), it returns (c0, c1) such that c0 ⊕ c1 = (a0 ⊕ a1) ·
(b0 ⊕ b1).

More precisely,

– c0 = a0 · b0,

– c1 = a1 · b1 ⊕ (a0 · b1 ⊕ a1 · b0),

where " · " is the multiplication mult_gf256_log_alog.

• mult_2: ISW multiplication on 2 shares. Given (a0, a1) , (b0, b1) ∈ GF(256) × GF(256), it
returns (c0, c1) such that c0 ⊕ c1 = (a0 ⊕ a1) · (b0 ⊕ b1).

More precisely,

– c0 = a0 · b0 ⊕ r,

– c1 = a1 · b1 ⊕ [(r ⊕ a0 · b1)⊕ a1 · b0],
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where r is a random in GF(256) and " · " is the multiplication mult_gf256_log_alog.

• square_2: squaring on 2 shares. Given (a0, a1), it returns (c0, c1) =
(
a20, a

2
1

)
, where the

square is computed with mult_gf256_log_alog.

• refresh_2: mask refreshing on 2 shares. Given (a0, a1), it returns (c0, c1) = (a0 ⊕ r, a1 ⊕ r),
where r is a random in GF(256).

• and_8bits_4shares: computes a sharing (4 shares of 1 B each) of a&b, each input being
given by 4 shares of 1 B each, concatenated in one 4 B register. This implementation comes
from [BDF+17].

• and_8bits_4shares_1reg: computes a sharing (4 shares of 1 B each) of a&b, each input
being given by 4 shares of 1 B each, each share being in a separate register from the others.

Some levels of whitening can be defined, in order to clear registers and memory handling tem-
porary variables before reusing them.

3.5. Complex Function: The Inverse in GF(256)
The inverse computation in the Rijndael field GF(256) relies on the square_2, mult_2 and refresh_2
functions described above. The inverse of a ∈ GF(256) is obtained by computing successively

• a2 with a squaring

• a3 with a multiplication, after refreshing a

• a12 with 2 successive squarings, after refreshing a3

• a15 with a multiplication

• a240 with 4 successive squarings, from a15

• a252 with a multiplication

• a256 with a multiplication

4. Leakage Analysis of Basic Instructions

4.1. Introduction
As explained in Section 3.3, we will study the side-channel leakage of three instructions (namely
adds, eors and ands) on registers ri and rj for 0 ≤ i < j ≤ 7.

4.2. Single Instruction on 32 bits
In the first experiment, only r0 and r1 are used by the three instructions, we focus on the instructions
themselves. The acquisition parameters are detailed in Table 1.
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operation adds/eors/ands r0 r1
equipment PicoScope 6424E, Scaffold
inputs r0 and r1 filled with 32 bits fresh randoms
number of operations 100000
length 50us
sampling rate 1.25GSa/s
samples per trace 625KSamples
channel(s) I/O, Power
channel(s) parameters I/O: DC, voltage range [−5, 5]V

Power: DC, voltage range [−320, 80]mV
file size 125GB
acquisition time about 2.5 days

Table 1: Acquisition Parameters Single Instructions r0-r1

Each of the 100000 operations of this acquisition campaign is constituted of 21 calls to the three
instructions adds/eors/ands, as follows (the asm macro for each instruction can be found in the study
material provided with this document 5):

GET_RAND_32 (randa ); // get the next 4 bytes of random_buffer
GET_RAND_32 (randb ); // get the next 4 bytes of random_buffer
a = randa;
b = randb;

adds_r0r1(a, b);

a = randa;
b = randb;

eors_r0r1(a, b);

a = randa;
b = randb;

ands_r0r1(a, b);

We then ended up with about 2M executions for each instruction. Each instruction call being
surrounded by a trigger signal on the I/O channel, the identification of the 2M sub-traces for each
instruction is trivial. Moreover, the clock stability allows to bypass the otherwise necessary traces
re-synchronization. Figure 4 displays 100 superposed sub-traces among the total of 6M sub-traces.
The vertical dashed lines identify the trigger position whereas the gray box pinpoints the expected
area of the instruction execution. The 100 sub-traces relate to all three target instructions, it is easy
to see that adds, eors and ands take the same time to execute (1 cycle in ARM instruction set).

5see the basic_instructions.s asm file.
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Figure 4: Single Instruction - 100 Superposed Power Traces

4.2.1. Leakage at Byte Level

The following Figures 5, 6 and 7 show the SNR computation results for the three instructions re-
spectively (eors, adds and ands). In each figure, the 100 superposed traces are recalled in the first
sub-figure, then three sub-figures relate to the SNR results on the first input value (a on 4 bytes
stored in r0), the second input value (b on 4 bytes stored in r1) and the output value (c stored in r0
after the instruction execution).

For each target variable on 4 bytes, 4 SNRs are estimated independently on each of the 4 bytes
assuming no specific leakage model, i.e. the SNR is computed over the 256 possible values taken by
a byte. The 4 SNR results for each target variable are displayed on the same sub-figure, appearing
respectively red, blue, green and purple from the least significant Byte to the most significant Byte.
Let us remark that the output of the adds instruction impacts the carry flag, hence adding a bit to the
output value. The SNR on the carry bit value is then added to Figure 6 last sub-figure (appearing in
orange).

Let us summarize what can be observed from the SNR results:

• What appears clearly on Figures 5, 6 and 7 is the fact that only the least significant byte shows
significant leakage in the identified area, the three most significant bytes seem not to leak at
all. This is rather unexpected and we could not explain this phenomenon6 without a precise
understanding of the underlying Hardware design of the DUT.

• The SNR of the 4-byte output c of instruction and (Figure 7 last sub-figure) shows a noise level
higher that the other variables. This is expected and simply due to c bias: its bytes do not
take all values in [0, .., 255] with the same probability. For similar reasons, the LSB of c (the
red curve) shows strong leakages before it is actually computed. In fact, the value a&b directly
depends on value a (whatever the value of b) and b. Therefore, the strong SNR related to c
before its computation corresponds actually to the manipulation of a and b.

• For all instructions, it is pretty clear that the value stored in register r0 leaks more often than
the one in register r1 (this is particularly visible before the instruction execution).

6A intensive effort was devoted to find a bug creating this result in the OpenCard code and statistical treatment, without
success.
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r0← [a0, a1, a2, a3]

r1← [b0, b1, b2, b3]

[a0 ⊕ b0, a1 ⊕ b1, a2 ⊕ b2, a3 ⊕ b3]

Figure 5: SNR Results – Instruction eors r0, r1
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r0← [a0, a1, a2, a3]

r1← [b0, b1, b2, b3]

[c0, c1, c2, c3, c4] = a+ b

Figure 6: SNR Results – Instruction adds r0, r1
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r0← [a0, a1, a2, a3]

r1← [b0, b1, b2, b3]

[a0&b0, a1&b1, a2&b2, a3&b3]

Figure 7: SNR Results – Instruction ands r0, r1

To precisely understand where the instruction is actually executed, we display in the following
figure 8, the SNR results (on the LSB only since the other bytes do not seem leak) inside the area
identified around the trigger signal. Figure 8 provides, for each instruction, the SNRs on variables a, b
and c in the same sub-figure (a is red, b is blue and c is green), allowing to better visualize the leakage
timings. Apart from the and instruction where the leakage of c cannot be clearly differentiated from
the one related to a or b, the SNRs peaks between time samples 1100 and 1200 (i.e. within a single
cycle of the DUT) show the manipulation of a and b closely followed by the manipulation of c. This is
exactly what we are expecting from the instruction Execute stage7.

7the DUT possesses a 3-stage pipeline (Fetch, Decode, Execute)
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eors r0, r1→ r0

adds r0, r1→ r0

ands r0, r1→ r0

Figure 8: SNR Comparison on LSB

4.2.2. Leakage at Bit Level

In the previous section, a strong leakage related to the LSB of the input and output of the three
studied instructions has been exhibited. We study here the leakage related to each of the 8 bits of
the leaking LSB. The targeted variables now take binary values, we then use the T-Test to compare
them. The purpose of this experiment is to better understand the real leakage function of the Byte
value. This function could be estimated using linear regression or mutual information. However it is
not clear how this knowledge could be used to improve the masking schemes and therefore we did
not go that far. The idea here is simply to verify that all 8 bits have an impact on the leakage. The
results show that all 8 bits impact the Byte leakage. Moreover, the leakage function is not far from
the Hamming Weight model often observed in practice.
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For illustration purpose, we display in Figure 9 the T-Test results for instruction eors. The 8 T-
Test scores over the 2M Power traces are given for the LSB of the two inputs a and b and the output
c = a⊕ b (again none of the 3 MSB bits show significant leakage in the area of interest).

[a0,0, .., a0,7]

[b0,0, .., b0,7]

[a0,0 ⊕ b0,0, .., a0,7 ⊕ b0,7]

Figure 9: T-Test Results on each bit of LSB – Instruction eors r0, r1

4.3. Impact of Registers Choice
In the second experiment, we focus on the leakage of the LSB of a, b and c for the three instructions
while varying the register choice. The acquisition parameters are detailed in Table 2.
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operation adds/eors/ands ri rj for 0 ≤ i < j ≤ 7

equipment PicoScope 6424E, Scaffold
inputs rj and rj filled with 8 bits fresh randoms
number of operations 5000
length 20ms
sampling rate 1.25GSa/s
samples per trace 25MSamples
channel(s) I/O, Power
channel(s) parameters I/O: DC, voltage range [−5, 5]V

Power: DC, voltage range [−320, 80]mV
file size 233GB

Table 2: Acquisition Parameters Single Instructions ri-rj

Each of the 5000 operations of this acquisition campaign is constituted of 84 calls to the 28
combinations of register choices for each of the three instructions adds/eors/ands (the asm macro
for each instruction can be found in the study material provided with this document 8). In total, each
side-channel trace contains 3× 28× 84 successive calls to a single instruction.

We then ended up with 420000 (= 5000×84) executions for each instruction call of the type inst
ri, rj. Each instruction call being surrounded by a trigger signal on the I/O channel, the identifica-
tion of the 420K sub-traces for each instruction is trivial. Again, the clock stability allows to bypass
the otherwise necessary traces re-synchronization.

This experiment aims at comparing the leakage strength related to the register choice with re-
spect to the instruction call. Let us emphasize that the results are intrinsically limited by the facts
that (1) only the first 8 registers where tested, (2) r0 was never tested as the second argument of an
instruction, (3) r7 was never tested as the first argument of an instruction.

We computed the SNR on the two input Bytes and the output Byte of each instruction call. The
results are plotted on Figures 10, 11 and 12 respectively for instruction eors, adds and ands. For
each SNR sub-figure, 24 score traces are displayed, one for each pair of registers (ri, rj) (for
0 ≤ i < j ≤ 7). The SNR traces colors have been chosen to illustrate the unique clear and
consistent behaviour we observed on these results. For all SNR sub-figure of Figures 10, 11 and 12,
the 24 SNR traces take exactly 7 different colors, the color of SNR score corresponding to inst ri,
rj is selected by the ri choice among its 7 possible values {r0, r1, . . . , r6}. Hence, when ri is r0,
the SNR scores are displayed in red; when ri is r1, the color is blue, and so on.

From Figures 10, 11 and 12, our main observation is that the choice of register does not have a
strong impact on the leakage of the inputs/output of the instruction call but for a very specific case:
when ri is r1 (the blue scores in all SNR sub-figures). In this case, and whatever is the choice
of inst or rj, the leakage related to b (second argument of inst, i.e. the one stored in rj) has a
significative loss of SNR whereas the leakage related to a (the first argument) is increased. A careful
analysis (comparing Figures 10 and 11) shows that, when ri is r1, the leakage related to b is in fact
replaced by the leakage of a⊕ b (somehow a register overwrite must happen that blinds the leakage
of b by a⊕ b). This implies that the output c = a⊕ b in the case of instruction eors, leaks before its
very computation by the DUT. In the case of adds, the same observation holds but with a reduced
leakage strength, indeed the values a+ b and a⊕ b are not equal but have strong data dependency.

8see the basic_instructions.s asm file.
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This observation could be exploited by a developer of the OpenCard that needs to manipulate a
sensitive value x and mask it with a random r. When doing so, the developer needs to execute the
instruction eors ri, rj. To reduce the leakage related to the value x, he should store r in register
r1 and x in register rj (j 6= 1) and execute eors r1, rj.

ri← a

rj← b

a⊕ b

Figure 10: SNR Results – eors ri, rj
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ri← a

rj← b

a+ b

Figure 11: SNR Results – adds ri, rj
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ri← a

rj← b

a&b

Figure 12: SNR Results – ands ri, rj

4.4. Two Successive Instructions
In the next experiment, we consider the succession of two instruction calls. All combinations of
(inst1, inst2) are investigated. The acquisition parameters are detailed in Table 3.
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operation adds/eors/ands r0, r1
adds/eors/ands r2, r3

equipment PicoScope 6424E, Scaffold
inputs r0, r1, r2 and r3 filled with 32 bits fresh randoms
number of operations 10000
length 50us
sampling rate 1.25GSa/s
samples per trace 625KSamples
channel(s) I/O, Power
channel(s) parameters I/O: DC, voltage range [−5, 5]V

Power: DC, voltage range [−320, 80]mV
file size 12GB

Table 3: Acquisition Parameters Two Successive Instructions

Each of the 10000 operations of this acquisition campaign is constituted of 10 calls to the 9 pairs
of instructions (inst1,inst2) where insti ∈ {adds, eors, ands}. An example of an asm macro for
these calls is given below (the asm macro for each double instructions can be found in the study
material provided with this document 9. The two consecutive instructions work on two different pairs
of registers filled with independent values. The idea of this experiment is to analyse the interaction
of these values and potential unexpected leakages.

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; EXAMPLE CODE ADD -ADD Instruction
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
adds_adds_r0r1r2r3

push {r4}

TRIG00 r4
adds r0, r1
adds r2, r3
TRIGFF r4

pop {r4}
bx lr

We then ended up with 100000 executions for each instruction pair. Each instruction pair being
surrounded by a trigger signal on the I/O channel, the identification of the 100000 sub-traces for
each of them is trivial. Again, the clock stability allows to bypass the otherwise necessary traces re-
synchronization. Figure 13 displays 100 superposed sub-traces among the total of 900K sub-traces.
The vertical dashed lines identify the trigger position whereas the gray box pinpoints the expected
area of the two instruction executions.

9see the basic_instructions.s asm file.
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Figure 13: Two Consecutive Instructions - 100 Superposed Power Traces

The following figure 14 depicts the SNR results for the three instruction pairs that start with a
eors. The other cases fully comply with these results and therefore are not displayed for concise-
ness. For the three SNR sub-figures of Figure 14, 6 SNR scores are displayed: the DUT is executing
e = a⊕ b and then f = c ? d, with ? being either ⊕,+ or &. The SNR computations with respect to
the values taken by the LSB of {a, b, c, d, e, f} are displayed for each case of operation ?. The SNR
respective colors for {a, b, c, d, e, f} are {red, blue, green, purple, orange, yellow}. The SNR of the 3
MSB of the target variables are not displayed since, similarly to previous observations, they do not
show significant SNRs.

As expected, the leakage related to the first instruction (eors) corresponds exactly to what was
observed in previous sections. The second instruction however, seems to show a different behaviour:
the three variables (c, d, f ) do not show leakages during the next DUT clock cycle (around sample
1340) but the one after that (around sample 1480) and they all three leak simultaneously (f does
appear a bit later than c and d). We will need more SNR computations to explain what happens.
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eors r0, r1; eors r2, r3

eors r0, r1; adds r2, r3

eors r0, r1; ands r2, r3

Figure 14: SNR Results – eors r0, r1; inst2 r2, r3 – {a, b, c, d, e, f}

To study the interactions between the two consecutive instruction calls, we computed the SNR
with respect to the values v ⊕ {a, b, c, d, e, f} with v ∈ {a, b, c, d, e, f}10. The next Figure 15 plots
some of the results:

• The second sub-figure shows the SNR results of a⊕ {a, b, c, d, e, f}. The SNR peaks show a
leakage relating to a⊕ b and a⊕ e, which is expected.

• The third sub-figure shows the SNR results of d ⊕ {a, b, c, d, e, f}. There, one can see that
d⊕ b (in blue) shows a SNR peak, meaning that the consecutive processing of b and d by two
different instructions induces a leakage on d ⊕ b. This fact has to be taken into account by a

10Of course, v ⊕ v will always show a null SNR
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developer who must avoid the consecutive manipulation of two variables whose difference is
sensitive.

• Finally, the last sub-figure shows the SNR results of e ⊕ {a, b, c, d, e, f}. Here, the interesting
observation is the yellow SNR (corresponding to e⊕ f ) around sample 1360, its time position
and shape is similar to what we identified as the Execute stage of a single instruction (see
Section 4.2.1, Figure 8). We can deduce from this observation that the Execute stage of the
second instruction really occurs at the next cycle after the Execute stage of the first instruction
(as it should be), but since f takes the place of the previously computed e, the leakage relates
to e⊕ f .

a⊕ {a, b, c, d, e, f}

d⊕ {a, b, c, d, e, f}

e⊕ {a, b, c, d, e, f}

Figure 15: SNR Results – eors r0, r1; eors r2, r3 – v ⊕ {a, b, c, d, e, f}
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This experiment concludes the study of basic instructions, in the next section we will have a look
at a gadget (as defined in Section 3.4)

5. Leakage Analysis of Masked AND Gadget

5.1. Introduction
In this experiment we will study the and_8bits_4shares gadget as defined in Section 3.4, its asm
implementation is given here (the asm macro for each gadget can be found in the study material
provided with this document 11):

GET_1B_RAND_asm r3
GET_1B_RAND_asm r2
add r3, r2, LSL #8
GET_1B_RAND_asm r2
add r3, r2, LSL #16
GET_1B_RAND_asm r2
add r2, r3, r2 , LSL #24

ands r3, r0 , r1
eors r4, r3 , r2
ands r3, r0 , r1 , ROR #8
eors r4, r3
ands r3, r1 , r0 , ROR #8
eors r4, r3
eors r4, r2 , ROR #8
ands r3, r0 , r1 , ROR #16
eors r0, r4 , r3

where the GET_1B_RAND_asm asm macro picks a random byte based on the internal xorshift96
pseudo-random generator (see Section 3.1) initialized with a fresh random seed every 16 calls to
and_8bits_4shares gadget. The registers r0 and r1 contain the shared inputs a and b (the 4
shares are stored in a single register). At the end of and_8bits_4shares, the register r0 contains
the output c = a&b as 4 shares.
The acquisition parameters are detailed in Table 4.

11see the snippets.s asm file.
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operation AND 4-shares
equipment PicoScope 6424E, Scaffold
inputs r0, r1 filled with 32 bits fresh randoms
number of operations 150000
length 1ms
sampling rate 1.25GSa/s
samples per trace 660KSamples
channel(s) I/O, Power
channel(s) parameters I/O: DC, voltage range [−5, 5]V

Power: DC, voltage range [−320, 80]mV
file size 185GB
acquisition time about 4 days

Table 4: Acquisition Parameters AND 4-shares

Each of the 150000 operations of this acquisition campaign is constituted of 16 calls to the
and_8bits_4shares function. We then end up with about 2.4M executions of and_8bits_4shares.
Each call being surrounded by a trigger signal on the I/O channel, the identification of the 2.4M
sub-traces is trivial.

5.2. Signal Overview
Figure 16 displays 100 superposed traces of the and_8bits_4shares execution. It appears that
a small clock jitter induces a de-synchronization at the end of the traces, indeed the length of the
and_8bits_4shares execution is about 20 times longer than the previous target executions.

Figure 16: AND 4-shares – 100 Power Traces
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5.2.1. Traces Resynchronization

To solve this synchronization issue and given that the de-synchronization is not visible over 1000
sample traces, we use a very simple and efficient re-synchronization algorithm: a synchronization
point is positioned on the first trace every 1000 samples (as depicted on Figure 17) and all subse-
quent traces are re-synchronized based on those points. For each synchronization point, the exact
position on the processed trace is found taking the best 500 Samples cross-correlation score over a
sliding window of 50 Samples around the expected position.

Figure 17: AND 4-shares – Synchronization Points

The resulting re-synchronized traces are plotted in Figure 18, one can verify that the first 100
traces are well synchronized over the full length of the and_8bits_4shares execution. Moreover,
the next Figure 19 displays the average execution trace over the 2.4M re-synchronized traces, its
steady amplitude over the full execution confirms that the re-synchronization procedure is sound.

Figure 18: AND 4-shares – 100 Re-synchronized Traces
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5.2.2. First Observations

A quick study of the and_8bits_4shares code and corresponding Power traces allows to easily
identify the two parts of the execution (see Figure 19), i.e. (1) getting the randoms necessary for
the computation and (2) computing the secure AND on 4 shares. The first part, not optimized is
much longer than the computation itself. Our goal here is really to study the second part and not the
random generation but we will see that it provides some insight on the DUT leakage.

GET_1B_RAND_asm r3
GET_1B_RAND_asm r2
add r3, r2, LSL #8
GET_1B_RAND_asm r2
add r3, r2, LSL #16
GET_1B_RAND_asm r2
add r2, r3, r2 , LSL #24

ands r3, r0 , r1
eors r4, r3 , r2
ands r3, r0 , r1, ROR #8
eors r4, r3
ands r3, r1 , r0, ROR #8
eors r4, r3
eors r4, r2 , ROR #8
ands r3, r0 , r1, ROR #16
eors r0, r4 , r3

Figure 19: AND 4-shares – Average Re-synchronized Power Traces

Focusing on the second part of the and_8bits_4shares computation, Figure 20 depicts a ten-
tative identification of the successive instruction calls. This identification has been done based on
the Power trace study but also taking into account the side-channel analysis of the next section. We
must emphasize that this is mainly a way to illustrate what we are looking at and could be wrong,
there are no strong proof here but a body of weak evidences.
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Figure 20: AND 4-shares – Average Re-synchronized Power Traces Zoom

5.3. Side-Channel Analysis
The side-channel analysis consists in computing the SNR of all intermediate variables (and their
shares) of the and_8bits_4shares operation (again, we focus on the secure AND computation here,
not the PRNG calls). In the following a, b are the shared inputs (stored respectively in r0 and
r1 when calling and_8bits_4shares) and c the shared output (stored in r0 when returning from
and_8bits_4shares). We call s (to avoid confusion with registers names) the 4 random bytes gen-
erated from the 4 PRNG calls and stored in register r2 before the secure AND computation. Figure 21
displays the SNR result over the whole and_8bits_4shares execution for the 3 inputs and the output
of the secure AND computation whereas Figure 22 is a zoom in the secure AND computation. For all
variables, the 4 Bytes as well as their xor is considered, there are then 5 SNR scores for each of
them.

We sum up here the observations that can be made from this analysis:

• The first striking observation is that all 4 Bytes of r0, r1 and r2 are now leaking whereas
all results presented previously consistently showed that solely the LSB was leaking. This
contradiction could not find an explanation and we let for future work the tedious analysis that
will give some sense to this phenomenon.

• Another clear observation is that the shared value of a is strongly leaking during the PRNG
calls even though no manipulation of r0 is done there (this is also true for the shared value of
b, though in a milder fashion). This confirms a previous observation (see Section 4.2) that the
values stored in r0 will strongly leak even when no manipulation is intended.

• Finally, for all targeted variables, the xor of the 4 shares (i.e. the sensitive variables) shows
no significant leakage through the whole execution. This is a positive result as it shows that
storing all shares of a sensitive variable in the OpenCard does not compromise the soundness
of the masking scheme. This observation might have a great impact on the efficiency of the
masking scheme.
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[a0, a1, a2, a3, a0 ⊕ a1 ⊕ a2 ⊕ a3]

[b0, b1, b2, b3, b0 ⊕ b1 ⊕ b2 ⊕ b3]

[s0, s1, s2, s3, s0 ⊕ s1 ⊕ s2 ⊕ s3]

[c0, c1, c2, c3, c0 ⊕ c1 ⊕ c2 ⊕ c3]

Figure 21: AND 4-shares – SNR Scores – Inputs {a, b, s} and Output {c}
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[a0, a1, a2, a3, a0 ⊕ a1 ⊕ a2 ⊕ a3]

[b0, b1, b2, b3, b0 ⊕ b1 ⊕ b2 ⊕ b3]

[s0, s1, s2, s3, s0 ⊕ s1 ⊕ s2 ⊕ s3]

[c0, c1, c2, c3, c0 ⊕ c1 ⊕ c2 ⊕ c3]
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Figure 22: AND 4-shares – SNR Scores Zoom – Inputs {a, b, s} and Output {c}

For completeness, we provide in the following figures 23 to 30, the 5 SNR scores of each of
the instruction output (4 Bytes plus the xor of them) during the secure AND computation. One can
see that, for some of them, the xor of the 4 Bytes (the red SNR in the figures) shows a leakage.
Interpreting this leakage is not easy and should not be regarded as a flaw in the masking scheme
implementation without a deeper study.
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[v0, v1, v2, v3, v0 ⊕ v1 ⊕ v2 ⊕ v3]

ands r3, r0, r1

Figure 23: AND 4-shares Carac – SNR Scores – ands r3, r0, r1

[v0, v1, v2, v3, v0 ⊕ v1 ⊕ v2 ⊕ v3]

eors r4, r3, r2

Figure 24: AND 4-shares Carac – SNR Scores – eors r4, r3, r2

[v0, v1, v2, v3, v0 ⊕ v1 ⊕ v2 ⊕ v3]

ands r3, r0, r1, ROR #8

Figure 25: AND 4-shares Carac – SNR Scores – ands r3, r0, r1, ROR #8

[v0, v1, v2, v3, v0 ⊕ v1 ⊕ v2 ⊕ v3]

eors r4, r3

Figure 26: AND 4-shares Carac – SNR Scores – eors r4, r3
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[v0, v1, v2, v3, v0 ⊕ v1 ⊕ v2 ⊕ v3]

ands r3, r1, r0, ROR #8

Figure 27: AND 4-shares Carac – SNR Scores – ands r3, r1, r0, ROR #8

[v0, v1, v2, v3, v0 ⊕ v1 ⊕ v2 ⊕ v3]

eors r4, r3

Figure 28: AND 4-shares Carac – SNR Scores – eors r4, r3

[v0, v1, v2, v3, v0 ⊕ v1 ⊕ v2 ⊕ v3]

eors r4, r2, ROR #8

Figure 29: AND 4-shares Carac – SNR Scores – eors r4, r2, ROR #8

[v0, v1, v2, v3, v0 ⊕ v1 ⊕ v2 ⊕ v3]

ands r3, r0, r1, ROR #16

Figure 30: AND 4-shares Carac – SNR Scores – ands r3, r0, r1, ROR #16

Page 33/37



VERISICC L3.3: Caractérisation des Composants AAP FUI25

5.4. Higher-Order Side-Channel Analysis
We conclude this side-channel analysis by the study of the Higher-Order leakage. In a first attempt,
we only consider univariate higher-order moments of the Power traces, i.e. we compute the SNRs
over centered powers of the traces considering each sample individually. Since we observed in
previous section (e.g. Figure 22) that the 4 shares of sensitive variables leak simultaneously this
approach makes sense while being much more affordable than estimating the multivariate higher-
order moments (whose computation cost increases exponentially with the order).

Figure 31 (with a zoom in the secure AND computation in Figure 32) shows the SNR results. For
each univariate statistical moment, the SNR of the unmasked values a, b and c is plotted. No sig-
nificant leakage is observed (c being the output of a&b its value is not equiprobably distributed in
[0, .., 255], this explain the SNR shape).

Since we know that all shares of (say a) leak at the same exact time samples, we would expect
(at least) the 4th order univariate analysis to exhibit a leakage. Our failure to do so certainly comes
from the number of available traces: 2.4M traces is certainly not enough to see such a high-order
leakage.
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Order 1 - [a,b,c ]

Order 2 - [a,b,c ]

Order 3 - [a,b,c ]

Order 4 - [a,b,c ]

Figure 31: AND 4-shares – Univariate HO SNR Scores – Inputs {a, b} and Output {c}
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Order 1 - [a,b,c ]

Order 2 - [a,b,c ]

Order 3 - [a,b,c ]

Order 4 - [a,b,c ]

Figure 32: AND 4-shares – Univariate HO SNR Scores Zoom – Inputs {a, b} and Output {c}

As previously stated, the higher-order multivariate analysis would require a tremendous compu-
tational effort if we want to consider all combinations of samples within the whole traces. We limited
our analysis to the secure AND computation area for the 2nd-order bivariate analysis and did not
found any leakage. For the third and fourth orders, we limited our analysis to tiny windows around
the SNR peaks visible in Figure 22. Again, none of these SNRs showed significant scores for the
unmasked values a, b or c.
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