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1. Introduction

1.1. Context
A masking compiler transforms an unmasked circuit into a masked one. The main idea is that the
compiler replaces basic operations, like addition and multiplication, by more sophisticate pieces of
code (the core gadgets) operating on shares. Unfortunately the composition of secure core gad-
gets does not necessarily leads to a secure masked algorithm. Therefore, some extra checks are
necessary.

The general idea is to do this within two stages. In the first stage, the compiler checks that the
composition of core gadgets leads to a secure masked algorithm. This can be done using various
techniques (e.g., typing for MaskComp, linear algebra for TORNADO). This step assumes that the core
gadgets satisfy some properties (linear, NI, SNI). If the composition is not secure, then compiler can
modify the base gadgets or insert some refresh gadgets to re-randomize the shares used between
base gadgets. Once the first step is successfully completed, the compiler generates the code. This
requires efficient implementations of the core gadgets satisfying the assumed security property.

1.2. Publications of the consortium
The consortium (co-)published two papers on the compiler tightPROVE/Tornado:

• [BDMRW20]: Tornado: Automatic Generation of Probing-Secure Masked Bitsliced Imple-
mentations. Sonia Belaïd, Pierre-Evariste Dagand, Darius Mercadier, Matthieu Rivain, and
Raphaël Wintersdorff. Eurocrypt 2020

• [BGR18]: Tight Private Circuits: Achieving Probing Security with the Least Refreshing. Sonia
Belaïd, Dahmun Goudarzi, and Matthieu Rivain. Asiacrypt 2018,

two papers on the expanding compiler in the random probing model:

• [BRT21]: On the Power of Expansion: More Efficient Constructions in the Random Probing
Model. Sonia Belaïd, Matthieu Rivain, and Abdul Rahman Taleb. Eurocrypt 2021

• [BCPRT20]: Random Probing Security: Verification, Composition, Expansion and New Con-
structions. Sonia Belaïd, Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Abdul
Rahman Taleb. Crypto 2020

and the following papers on the core gadgtes:

• [CGLS21]: Hardware Private Circuits: From Trivial Composition to Full Verification, Gaëtan
Cassiers, Benjamin Grégoire, Itamar Levi, François-Xavier Standaert, IEEE Trans. Computers
70(10): 1677-1690 (2021)

• [BGGOPP]: Masking in Fine-Grained Leakage Models: Construction, Implementation and Ver-
ification, Gilles Barthe, Marc Gourjon, Benjamin Grégoire, Maximilian Orlt, Clara Paglialonga,
Lars Porth, IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(2): 189-228 (2021).

• [BBDFGSS]: Improved parallel mask refreshing algorithms: generic solutions with parametrized
non-interference and automated optimizations, Gilles Barthe, Sonia Belaïd, François Dupres-
soir, Pierre-Alain Fouque, Benjamin Grégoire, François-Xavier Standaert, Pierre-Yves Strub.
J. Cryptogr. Eng. 10(1): 17-26 (2020).
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1.3. Organization
We organize the deliverable according to two main contributions. In Section 2, we describe the
Tornado compiler and we provide implementations of non-linear core gadgets (Refresh and Multipli-
cation/And) in the probing model with the least randomness. In Section 3, we describe the expanding
compiler and its base gadgets to build secure implementations in the random probing model.

2. Tornado in the Probing Model

2.1. Description of the Compiler

The method of Barthe et al. [BBD+16] allows one to safely compose t-NI and t-SNI gadgets and get
probing security at any order. Nevertheless, it is not tight and makes use of more refresh gadgets
than required. In many contexts, randomness generation is expensive and might be the bottleneck
for masked implementations. For instance, Journault and Standaert describe an AES encryption
shared at the order d = 32 for which up to 92% of the running time is spent on randomness gener-
ation [JS17]. In such a context, it is fundamental to figure out whether the number of t-SNI refresh
gadgets inserted by Barthe et al.’s tool maskComp is actually minimal to achieve t-probing security.
Belaïd, Goudarzi, and Rivain find out that it is not and provide a new method which exactly identifies
the concrete probing attacks in a Boolean shared circuit [BGR18].

Let us take a simple example. We consider the small randomized circuit referred to as Circuit
1 and illustrated in Figure 1 with [⊕] a t-NI sharewise addition, [⊗] a t-SNI multiplication, and two
Boolean sharings [x1] and [x2]. Applying Barthe et al.’s tool maskComp on this circuit automatically
inserts a t-SNI refresh gadget in the cycle formed by gates [x1], [⊕], and [⊗] as represented in
Figure 2. However, it can be verified that for any masking order t, the initial circuit is t-probing
secure without any additional refresh gadget. Therefore, the work of Belaïd, Goudarzi, and Rivain
aims to refine the state-of-the-art method [BBD+16] to only insert refresh gadgets when absolutely
mandatory for the t-probing security.

[x1] [x2]

[⊕]

[⊗]

Figure 1: Graph representation of Circuit 1.

[x1] [x2]

[⊕]

R

[⊗]

Figure 2: Graph representation of Circuit 1
after maskComp.

2.2. TIGHTPROVE
In a first attempt, Belaïd et al.’s built a tool referred to as tightPROVE. tightPROVE can be seen as
a compiler for probing secure masked circuits. It takes as input a list of instructions that describes
a shared circuit made of specific multiplication, addition and refresh gadgets and outputs either a
probing security proof of these instructions –if implemented with carefully chosen masked gadgets–
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or a probing attack. To that end, a security reduction is made through a sequence of four equivalent
games. In each of them, an adversary A chooses a set of probes P (indices pointing to wires in the
shared circuit) in the target circuit C, and a simulator S wins the game if it successfully simulates
the distribution of the tuple of variables carried by the corresponding wires without knowledge of the
secret inputs.

Game 0 corresponds to the t-probing security definition: the adversary can choose t probes
in a t + 1-shared circuit, on whichever wires she wishes. In Game 1, the adversary is restricted
to only probe gadget inputs: one probe on an addition or refresh gadget becomes one probe on
one input share, one probe on a multiplication gadget becomes one probe on each of the input
sharings. In Game 2, the circuit C is replaced by another circuit C ′ that has a multiplicative depth
of one, through a transformation called Flatten, illustrated in [BGR18]. In a nutshell, each output of
a multiplication or refresh gadget in the original circuit gives rise to a new input with a fresh sharing
in C ′. Finally, in Game 3, the adversary is only allowed to probe pairs of inputs of multiplication
gadgets. The transition between these games is mainly made possible by an important property of
the selected refresh and multiplication gadgets: in addition to being t-probing secure, they are t-
strong non interfering (t-SNI for short) [BBD+16]. Satisfying the latter means that t probed variables
in their circuit description can be simulated with less than t1 shares of each input, where t1 ≤ t
denotes the number of internal probes i.e., which are not placed on output shares.

Game 3 can be interpreted as a linear algebra problem. In the flattened circuit, the inputs of mul-
tiplication gadgets are linear combinations of the circuit inputs. These can be modelled as Boolean
vectors referred to as operand vectors, with ones at indexes of involved inputs. From the definition of
Game 3, the 2t probes made by the adversary all target these operand vectors for chosen shares.
These probes can be distributed into t+1 matricesM0, . . . ,Mt, where t+1 corresponds to the (tight)
number of shares, such that for each probe targeting the share i of an operand vector v, with i in
{0, . . . , t}, v is added as a row to matrix Mi. Deciding whether a circuit is t-probing secure can then
be reduced to verifying whether IM(MT

0 ) ∩ · · · ∩ IM(MT
t ) = ∅ (where IM(·) denotes the column

space of a matrix). The latter can be solved algorithmically with the following high-level algorithm for
a circuit with m multiplications:

For each operand vector w,

1. Create a set G1 with all the multiplications for which w is one of the operand vectors.

2. Create a set O1 with the co-operand vectors of w in the multiplications in G1.

3. Stop if w ∈ 〈O1〉 (O1’s linear span), that is if w can be written as a linear combination of
Boolean vectors from O1.

4. For i from 2 to m, create new sets Gi and Oi by adding to Gi−1 multiplications that involve an
operand w′ verifying w′ ∈ (w ⊕ 〈Oi−1〉), and adding to Oi−1 the other operand vectors of
these multiplications. Stop whenever i = m or Gi = Gi−1 or w ∈ 〈Oi〉.

If this algorithm stops when w ∈ 〈Oi〉 for some i, then there is a probing attack on w, i.e., for a
certain t, the attacker can recover information on x ·w (where x denote the vector of plain inputs),
with only t probes on the (t+ 1)-shared circuit. In the other two scenarios, the circuit is proven to be
t-probing secure for any value of t.

As an illustration, tightPROVE was applied to the efficient implementation of the AES s-box
developed by Goudarzi and Rivain in [GR17]. Based on the previous state of the art, this s-box was
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implemented using one SNI refresh gadget per multiplication gadget (to refresh one of the operands),
hence requiring a total of 32 refresh gadgets (which was later on confirmed by the maskComp tool).
The new method formally demonstrates that the same d-shared implementation is actually t-probing
secure with no refresh gadget for any d = t + 1. This new implementation achieves an asymptotic
gain up to 43%. The code is provided on the website

https://github.com/CryptoExperts/tightPROVE.

These results are extended to larger circuits by establishing new compositional properties on
t-probing secure gadgets. In particular, these new composition properties well apply to the case of
SPN-based block ciphers. They also apply to a wide range of Boolean circuits with common gadgets
and input sets.

2.3. Tornado
Although nicely answering a relevant open issue, TIGHTPROVE still suffers two important limitations.
First it only applies to Boolean circuits and does not straightforwardly generalize to software imple-
mentation processing `-bit registers (for ` > 1). Secondly, it does not provide a method to place the
refresh whenever a probing attack is detected.

A parallel sequence of works has focused on the efficient implementation of masking schemes
with possibly high orders. For software implementations, it was recently demonstrated in several
works that the use of bitslicing makes it possible to achieve (very) aggressive performances. In the
bitsliced higher-order masking paradigm, the ISW scheme is applied to secure bitwise and instruc-
tions which are significantly more efficient than their field-multiplication counterparts involved in the
so-called polynomial schemes [GR17, JS17]. Moreover, the bitslice strategy allows to compute sev-
eral instances of a cryptographic primitive in parallel, or alternatively all the s-boxes in parallel within
an instance of the primitive. The former setting is simply called (full) bitslice in the deliverable while
the latter setting is referred to as n-slice. In both settings, the high degree of parallelization inher-
ited from the bitslice approach results in important efficiency gains. Verifying the probing security of
full bitslice masked implementation is possible with TIGHTPROVE since the different bit slots (corre-
sponding to different instances of the cryptographic primitive) are mutually independent. Therefore,
probing an `-bit register in the bitslice implementation is equivalent to probing the corresponding
variable in ` independent Boolean circuits, and hence TIGHTPROVE straightforwardly applies. For
n-slice implementations on the other hand, the different bit slots are mixed together at some point
in the implementation which makes the verification beyond the scope of TIGHTPROVE. In practice,
for masked software implementations, the register probing model makes much more sense than the
bit probing model because a software implementation works on `-bit registers containing several bits
that leak all together.

Another limitation of TIGHTPROVE is that it simply verifies an implementation under the form of
an abstract circuit but it does not output a secure implementation, nor provide a sound placing of
refresh gadgets to make the implementation secure. In practice one could hope for an integrated
tool that takes an input circuit in a simple syntax, determine where to place the refresh gadgets
and compile the augmented circuit into a masked implementation, for a given masking order on a
given computing platform. USUBA, introduced by Mercadier and Dagand in [MD19], is a high-level
programming language for specifying symmetric block ciphers. It provides an optimizing compiler that
produces efficient bitsliced implementations. On high-end Intel platforms, USUBA has demonstrated
performance on par with several, publicly available cipher implementations. As part of its compilation
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pipeline, USUBA features an intermediate representation, USUBAZ that shares many commonalities
with the input language of TIGHTPROVE.

It was therefore natural to consider integrating both tools in a single programming environment.
Belaïd, Dagand, Mercadier, Rivain, and Wintersdorff therefore aim at enabling cryptographers to
prototype their algorithms in USUBA, letting TIGHTPROVE verify or repair its security and letting the
USUBA back-end perform masked code generation [BDM+20]. Concretely, they provide the following
contributions:

(1.) The authors tackle the limitations of TIGHTPROVE and propose an extended verification tool,
that they call TIGHTPROVE+. This tool can verify the security of any masked bitslice implemen-
tation in the register probing model (which makes more sense than the bit probing model w.r.t.
masked software implementations). Given a masked bitslice/n-slice implementation composed
of standard gadgets for bitwise operations, TIGHTPROVE+ either produces a probing-security
proof or exhibits a probing attack.

(2.) They present (and report on the development of) a new compiler TORNADO1 which integrates
USUBA and TIGHTPROVE+ in a global compiler producing masked bitsliced implementations
proven secure in the bit/register probing model. This compiler takes as input a high-level,
functional specification of a cryptographic primitive. If some probing attacks are detected by
TIGHTPROVE+, the TORNADO compiler introduces refresh gadgets, following a sound heuris-
tic, in order to thwart these attacks. Once a circuit has been identified as secure, TORNADO

produces bitsliced C code achieving register probing security at a given input order. To account
for the limited resources available on embedded systems, TORNADO exploits a generalization
of bitslicing – implemented by USUBA – to reduce register pressure and implements several
optimizations specifically tailored for Boolean masking code. The source code of TORNADO is
available at:

https://github.com/CryptoExperts/Tornado

(3.) They evaluate TORNADO on 11 cryptographic primitives from the second round of the ongoing
NIST lightweight cryptography standardization process.2 The choice of cryptographic primi-
tives has been made on the basis that they were self-identified as being amenable to masking.
These implementation results give a benchmark of these different candidates with respect to
masked software implementation for a number of shares ranging between 1 and 128. The
obtained performances are pretty satisfying. For instance, the n-slice implementations of the
tested primitives masked with 128 shares takes from 1 to a few dozen megacycles on an
Cortex-M4 processor.

All the technical details can be found in the full version of the published paper [BDM+20]:

https://eprint.iacr.org/2020/506.pdf.

2.4. Implementation for core gadgets
In this section we provide an algorithmic description of important gadgets that need to be provided
to be able to define a masking compiler. Those gadgets have been verified with maskVerif tool.

1TORNADO ambitions to be the workhorse of those cryptographers that selflessly protect their ciphers through provably
secure mask ing and precise bitslicing.

2https://csrc.nist.gov/Projects/lightweight-cryptography/round-2-candidates
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2.4.1. Refresh

To reduce randomness utilization, we provide a full set of new optimized SNI refreshing gadgets for
most practically-relevant orders (i.e. d ∈ {2, . . . , 16}), which require less randomness. All gadgets
were proven robust-SNI with the maskVerif tool. The randomness cost of the new refresh gadgets
compares favorably to the state-of-the-art for both hardware and software implementations regard-
ing randomness complexity (see Table 2). In particular, randomness gains of more than 30% are
obtained for d ∈ {3, 4, 5, 7, 8}.

Table 1: Best known SNI refresh gadgets at some orders for both hardware (glitch-robust) and soft-
ware implementations.

d HW [?] SW [?, ?] New refresh
2 1 1 1
3 3 3 2
4 6 4 4
5 10 8 5
6 15 12 7
7 21 13 9
8 28 16 11
9 36 18 13
10 45 20 15
11 55 22 17
12 66 24 20
13 78 26 26
14 91 28 28
15 105 30 30
16 120 32 32

The refresh algorithms are described using the maskVerif syntax. The + operator is the addition
of the group (i.e. XOR for boolean masking or modular addition for arithmetic masking). Remark that
maskVerif provides some short cut to describe this kind of operations:

• if r is a vector of shares (for example r[0], r[1], r[2]) then r>>1 represents the rotation
by 1 of the share (r[2], r[0], r[1])

• if r and R are vectors of shares then r + R represents the vector composed by the sum of
each share (r[0] + R[0], r[1] + R[1], r[2] + R[2])

Order 1 (d = 2)

proc Refresh:
inputs: a[0:1]
outputs: c[0:1]
randoms: t0;

c[0] =![a[0]+t0];
c[1] =![a[1]+t0];

end
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Order 2 (d = 3)

proc Refresh:
inputs: a[0:2]
outputs: c[0:2]
randoms: t0, t1;

c[0] =![a[0]+t0];
c[1] =![a[1]+t1];
t2 =![t0+t1];
c[2] =![a[2]+t2];

end

Order 3 (d = 4)

proc Refresh:
inputs: a[0:3]
outputs: c[0:3]
shares: R[0:3]
randoms: r[0:3];

R =![r + (r>>1)];
c =![a+R];

end

Order 4 (d = 5)

proc Refresh:
inputs: a[0:4]
outputs: c[0:4]
shares: R[0:4]
randoms: r[0:4];

R =![r + (r>>1)];
c =![a+R];

end

Order 5 (d = 6)

proc Refresh:
inputs: a[0:5]
outputs: c[0:5]
shares: R[0:5]
randoms: r[0:5], s0;

R =![r + (r>>1)];
R[0] := R[0] + s0;
R[3] := R[3] + s0;
c =![R];
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c =![a+c];
end

Order 6 (d = 7)

proc Refresh:
inputs: a[0:6]
outputs: c[0:6]
shares: R[0:6]
randoms: r[0:6], s0, s1;

R =![r + (r>>1)];
R[0] := R[0] + s0;
R[2] := R[2] + s1;
R[4] := R[4] + s0;
R[6] := R[6] + s1;
c =![R];
c =![a+c];

end

Order 7 (d = 8)

proc Refresh:
inputs: a[0:7]
outputs: c[0:7]
shares: R[0:7]
randoms: r[0:7], s0, s1, s2;

R =![r + (r>>1)];
R[0] := R[0] + s0;
R[1] := R[1] + s1;
R[2] := R[2] + s2;
R[4] := R[4] + s0;
R[5] := R[5] + s1;
R[6] := R[6] + s2;
c =![R];
c =![a+c];

end

Order 8 (d = 9)

proc Refresh:
inputs: a[0:8]
outputs: c[0:8]
shares: R[0:8]
randoms: r[0:8], s0, s1, s2;

R =![r + (r>>1)];
R[0] := R[0] + s0;
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R[1] := R[1] + s1;
R[3] := R[3] + s2;
R[4] := R[4] + s0;
R[6] := R[6] + s1;
R[7] := R[7] + s2;
c =![R];
c =![a+c];

end

Order 9 (d = 10)

proc Refresh:
inputs: a[0:9]
outputs: c[0:9]
shares: R[0:9]
randoms: r[0:9], s0, s1, s2, s3, s4;

R =![r + (r>>1)];
R[0] := R[0] + s0;
R[1] := R[1] + s1;
R[2] := R[2] + s2;
R[3] := R[3] + s3;
R[4] := R[4] + s4;
R[5] := R[5] + s0;
R[6] := R[6] + s1;
R[7] := R[7] + s2;
R[8] := R[8] + s3;
R[9] := R[9] + s4;
c =![R];
c =![a+c];

end

Order 10 (d = 11)

proc Refresh:
inputs: a[0:10]
outputs: c[0:10]
shares: R[0:10]
randoms: r[0:10], s0, s1, s2, s3, s4, s5;

R =![r + (r>>1)];
R[0] := R[0] + s0;
R[1] := R[1] + s1;
R[2] := R[2] + s2;
R[3] := R[3] + s3;
R[4] := R[4] + s4;
R[5] := R[5] + s0;
R[6] := R[6] + s1;
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R[7] := R[7] + s2 + s5;
R[8] := R[8] + s3;
R[9] := R[9] + s4;
R[10] := R[10] + s5;
c =![R];
c =![a+c];

end

Order 11 (d = 12)

proc Refresh:
inputs: a[0:11]
outputs: c[0:11]
shares: R[0:11]
randoms: r[0:11], s0, s1, s2, s3, s4, s5, s6, s7;

R =![r + (r>>1)];
R[0] := R[0] + s0;
R[1] := R[1] + s1;
R[2] := R[2] + s2+s6;
R[3] := R[3] + s3;
R[4] := R[4] + s4;
R[5] := R[5] + s5+s6;
R[6] := R[6] + s0;
R[7] := R[7] + s1;
R[8] := R[8] + s2+s7;
R[9] := R[9] + s3;
R[10] := R[10] + s4;
R[11] := R[11] + s5+s7;
c =![R];
c =![a+c];

end

Order 12 (d = 13)

proc Refresh:
inputs: a[0:12]
outputs: c[0:12]
shares: R[0:12], S[0:12]
randoms: r[0:12], s[0:12];

R =![r + (r>>1)];
S =![s + (s>>3)];
c =![R+S];
c =![a+c];

end

Order 13 (d = 14)
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proc Refresh:
inputs: a[0:13]
outputs: c[0:13]
shares: R[0:13], S[0:13]
randoms: r[0:13], s[0:13];

R =![r + (r>>1)];
S =![s + (s>>3)];
c =![R+S];
c =![a+c];

end

Order 14 (d = 15)

proc Refresh:
inputs: a[0:14]
outputs: c[0:14]
shares: R[0:14], S[0:14]
randoms: r[0:14], s[0:14];

R =![r + (r>>1)];
S =![s + (s>>3)];
c =![R+S];
c =![a+c];

end

Order 15 (d = 16)

proc Refresh:
inputs: a[0:15]
outputs: c[0:15]
shares: R[0:15], S[0:15]
randoms: r[0:15], s[0:15];

R =![r + (r>>1)];
S =![s + (s>>3)];
c =![R+S];
c =![a+c];

end

2.4.2. Multiplication

For the multiplication we recommand to use the DOM-AND [] algorithms or the PARA-AND [] algo-
rithms. The randomness needed for multiplication (AND) algorithm can vary a lot depending on the
security property we want to achive. Here we focus only on algorithms achiving the SNI property
because they are more relevant in the context of a masking compiler (this simplify the composition).
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Table 2: Best known SNI multiplication gadgets.

d DOM PARA
2 1 2
3 3 3
4 6 5
5 10 10

DOM-AND The DOM-AND algorithm works at any orders (in software it is relatively equivalent to
the ISW-multiplication: same need for randomness, same number of AND and XOR). We provide
the pseudo code.

proc AND:
inputs: a[0:d], b[0:d]
ouputs: c[0:d]
random: r[0:(d+1)d/2]
c := a * b;
for i = 0 to d do
for j = i + 1 to d do

aux := a[i] * b[j];
aux := ![aux + r[i*d + j-i-1]];
c[i] := c[i] + aux;
aux := a[j] * b[i];
aux := ![aux + r[i*d + j-i-1]];
c[j] := c[j] + aux;

done
done

PARA-AND, order 1 (d = 2)

proc AND:
inputs: a[0:1], b[0:1]
outputs: c[0:1]
shares: ab[0:1]
randoms: r[0:1];

ab := a * b;
c = ![ab + r];
ab := a * (b>>1);
c := c + ab;
c = ![c + (r>>1)];

end

PARA-AND, order 2 (d = 3)

proc AND:
inputs: a[0:2], b[0:2]
outputs: c[0:2]
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shares: ab[0:2]
randoms: r[0:2];

ab := a * b;
c = ![ab + r];
ab := a * (b>>1);
c = ![c + ab];
ab := (a>>1) * b;
c = ![c + ab];
c = ![c + (r>>1)];

end

PARA-AND, order 3 (d = 4)

proc AND:
inputs: a[0:3], b[0:3]
outputs: c[0:3]
shares: ab[0:3], ba[0:3], sa[0:3], sb[0:3], sr[0:3]
randoms: r[0:3],r’;

ab := a * b;
c = ![ab + r];
sa := a >> 1;
sb := b >> 1;
ab := sa * b;
c = ![c + ab];
ba := a * sb;
c = ![c + ba];
sr := r >> 1;
c = ![c + sr];
sb := b >> 2;
ab := a * sb;
c = ![c + ab];
c = ![c + [r’,r’,r’,r’]];

end

PARA-AND, order 4 (d = 5)

proc AND:
inputs: a[0:4], b[0:4]
outputs: c[0:4]
shares: ab[0:4]
randoms: r[0:4], r’[0:4];

ab := a * b;
c = ![ab + r];
ab := a * (b>>1);
c = ![c + ab];
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ab := (a>>1) * b;
c = ![c + ab];
c = ![c + (r>>1)];
ab := a * (b >> 2);
c = ![c + ab];
ab := (a>>2) * b;
c := c + ab;
c = ![c + r’];
c = c+(r’>>1);

end

2.4.3. Boolean/Arithmetic conversion

In this section we consider the formal verification of the high-order Boolean to arithmetic conversion
algorithm recently described at CHES 2017 [Cor17], with a t-SNI security proof for n ≥ t + 1. The
algorithm can be seen as a generalization of Goubin’s algorithm [Gou01] to any order, still with a
complexity independent of the register size k. Although the algorithm has complexity O(2n), instead
ofO(n2 ·k) in [CGV14], for small values of n it is an order of magnitude more efficient. The algorithm
takes as input n Boolean shares xi such that

x = x1 ⊕ · · · ⊕ xn

and using a recursive algorithm computes n arithmetic shares Di such that

x = D1 + · · ·+Dn (mod 2k)

R ψ R F C +

R F C

x D

Figure 3: Sequence of operations in the Boolean to arithmetic conversion algorithm from [Cor17].

2.4.4. Boolean to arithmetic conversion.

The algorithm from [Cor17] is based on the affine property of the function Ψ(x, r) := (x ⊕ r) − r
(mod 2k). As illustrated in Fig. 3 the algorithm is recursive and makes two recursive calls to the
same algorithm C with n− 1 inputs. For n = 2 one uses a t-SNI variant of Goubin’s algorithm:

D1 =
(
(x1 ⊕ r1)⊕Ψ(x1 ⊕ r1, r2 ⊕ (x2 ⊕ r1))

)
⊕Ψ(x1 ⊕ r1, r2) (1)

D2 = x2 ⊕ r1 (2)

For n ≥ 3 the algorithm works as follows. One first performs a mask refreshing R, while expanding
the xi’s to n+ 1 shares. One obtains, from the definition of the Ψ function:

x = x1 ⊕ x2 ⊕ · · · ⊕ xn+1

= (x1 ⊕ · · · ⊕ xn+1 − x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

= Ψ(x1, x2 ⊕ · · · ⊕ xn+1) + x2 ⊕ · · · ⊕ xn+1

Page 16/34



VERISICC L2.2: Formal methods for the verification of countermeasures AAP FUI25

From the affine property of the Ψ function, the left term can be decomposed into the xor of n shares
Ψ(x1, xi) for 2 ≤ i ≤ n+ 1, where the first share is (n ∧ 1) · x1 ⊕Ψ(x1, x2):

x = (n ∧ 1) · x1 ⊕Ψ(x1, x2)⊕Ψ(x1, x3)⊕ · · · ⊕Ψ(x1, xn+1) + x2 ⊕ · · · ⊕ xn+1

We obtain that x is the arithmetic sum of two terms, each with n Boolean shares; this corresponds
to the two branches in Fig. 3. One then performs a mask refreshing R on both branches, and then
a compression function F that simply xors the last two shares, so there remains only n − 1 shares
on both branches. One can then apply the Boolean to arithmetic conversion C recursively on both
branches, taking as input n−1 Boolean shares (instead of n), and outputting n−1 arithmetic shares;
we obtain:

x =
(
A1 + · · ·+An−1

)
+
(
B1 + · · ·+Bn−1

)
(mod 2k)

Eventually it suffices to do some additive grouping to obtain n arithmetic shares as output, as re-
quired:

x = D1 + · · ·+Dn (mod 2k)

We refer to [Cor17] for the details of the algorithm. The algorithm is proven t-SNI secure with n ≥ t+1
shares in [Cor17].

Algorithm representation. In [Cor18] we have described a formal verification of the security prop-
erties of RefreshMasks that are required for the security proof of the above Boolean to arithmetic
conversion algorithm in [Cor17]. However this provides only a partial verification of the algorithm,
since in that case the adversary is restricted to only probing the Boolean operations performed within
the RefreshMasks. To obtain a full verification, we must consider an adversary who can probe any
variable in the Boolean to arithmetic algorithm. In that case the formal verification becomes more
complex as we must handle both Boolean and arithmetic operations.

Since in [Cor18] the nested list representation already uses the + operator for the xor, we use
the ADD keyword to denote the arithmetic sum. For example, the final additive grouping can be
represented as:

> ( addi t ive−grouping ’ ( A1 A2) ’ ( B1 B2 ) )
( (ADD A1 B1) A2 B2)

which corresponds to the three arithmetic shares D1 = A1 +B1 (mod 2k), D2 = A2 and D3 = B2.
We also use the PSI operator to denote the application of the Ψ function. For example, the Boolean
to arithmetic conversion algorithm for n = 2 gives from (1) and (2):

> ( convba ’ ( X1 X2 ) )
( (+ (+ (+ X1 R1) ( PSI (+ X1 R1) (+ R2 (+ X2 R1 ) ) ) )

( PSI (+ X1 R1) R2 ) )
(+ X2 R1 ) )

Simplification rules. Given a list of intermediate variables that must be simulated, as previously
we must use a set of simplification rules to determine how many inputs xi are required for the simula-
tion. For the verification of Boolean circuits in the previous section, this was relatively straightforward
as we had essentially a single simplification rule, namely replacing x ⊕ r by r when the random r
appears only once in the intermediate variables. However when combining arithmetic and Boolean
operations the formal verification becomes more complex and we used the following simplification
rules.
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R1 R2 R4 R3+R4 R5 R6
no

yes yes
no no

yes yes

no

Figure 4: The rule application strategy for the formal verification of Boolean to arithmetic conversion.

• Rule 1: when ω = x1 + x2 mod 2k must be simulated, simulate both x1 and x2.

> ( prop−add ’ ( (ADD X1 X2 ) ) )
(X1 X2)

• Rule 2: from the affine property of the function Ψ, replace Ψ(x, y)⊕Ψ(x, z) by x⊕Ψ(x, y⊕z).

> ( replace−psi ’ (+ ( PSI A B) ( PSI A C) ) )
(+ A ( PSI A (+ B C) ) )

• Rule 3: from the definition of Ψ, replace Ψ(x, y) by (x⊕ y)− y mod 2k; we denote by SUB the
arithmetic subtraction.

> ( replace−psi−sub ’ ( PSI A B)
(SUB (+ A B) B)

• Rule 4: when a random r is used only once, replace x⊕ r by r, and similarly for x+ r mod 2k

and x− r mod 2k. This is an extension of the rule given by (??).

> ( i t e r− s i m p l i f y ’ ( ( + X1 R1) (ADD X2 R2) (SUB X3 R3 ) ) )
(R1 R2 R3)

• Rule 5: when a random r is not used in two intermediate variables e1 and e2, replace the
simulation of (e1 ⊕ r, e2 ⊕ r) by the simulation of (r, (e1 ⊕ r) ⊕ e2); this corresponds to the
change of variable r′ = e1 ⊕ r.

> ( s imp l i f y−x ’ ( ( + R1 X1) (+ R1 X2 ) ) )
(R1 (+ (+ R1 X1) X2 ) )

• Rule 6: when Ψ(x1, x2) must be simulated, simulate both x1 and x2.

> ( prop−psi ’ ( ( PSI A B ) ) )
(A B)

We note that the order in which the rules are applied matters. For example, once Rule 3 has
been applied, Rule 2 cannot be applied to the same expression, because the PSI operator has
been replaced by SUB. One must therefore use the right strategy for the application of the rules; an
overview is provided in Figure 4. In particular, we only apply Rule 3 if subsequently applying Rule 4
enables to eliminate the SUB operator, and Rule 6 is only applied as a last resort, when other rules
have failed.
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n #variables #tuples Security Time
2 11 11 X ε

3 48 1,128 X 0.08 s
4 133 383,306 X 85 s
5 312 387,278,970 X 88 h

Table 3: Formal verification of the t-SNI property of the Boolean to arithmetic conversion algorithm
from [Cor17].

Formal verification. In order to verify the t-SNI property of the Boolean to arithmetic algorithm, as
previously we must check that for all possible (n− 1)-tuples of intermediate variables (including the
outputs Di), the number of input variables xi’s that remain after the application of the above rules is
always ≤ tc, where tc is the number of non-output variables in the (n− 1)-tuple.

We summarize in Table 3 the timings of formal verification for the algorithm in [Cor17]. Note that
the Boolean to arithmetic conversion algorithm has complexity O(2n), and therefore the number of
possible (n − 1)-tuples of intermediate variables is O(2n

2
); that is why we could only perform the

formal verification up to n = 5.

3. Expanding Compiler in the Random Probing Model

3.1. Description of the compiler

In [BCP+20], Belaïd et al. propose a method to compose different gadgets while achieving arbitrary
levels of security in the random probing model. While the probing model considers a fixed number of
wires to leak during an execution, the random probing model considers that each wire in the circuit
leaks independently with fixed probability p. The advantage of the random probing model over the
probing model is that the former is closer to the reality of physical leakage than the latter. In fact,
the probing model has been challenged by the community, typically due to the fact that it does not
capture horizontal side-channel attacks. A circuit is said to be secure in the so-called random probing
model if there is a negligible probability ε that the leaking wires actually reveal any information about
the secrets. We say that the circuit is (p, ε)-random probing secure. An equivalent simulation based
definition is that there exists a simulator S which can successfully simulate the distribution of the
tuple of variables carried by the corresponding leaking wires without knowledge of the secret inputs,
and which fails to simulate them with probability at most ε.

When dealing with arbitrarily large circuits, it becomes difficult to provide their n-share random
probing secure variants by considering the whole implementation at once. Instead, one starts with
building block circuits called gadgets, and which are to be proved random probing secure. Then,
providing a random probing secure version of any large circuit will amount to replacing each operation
in the circuit by the corresponding n-share gadget and connecting the output shares of a gadget to
the input shares of the next gadget in the circuit. This gives rise to the need of a composition
notion in the random probing model. In [BCP+20], Belaïd et al. define the (t, p, ε)-random probing
composability property, which is reminiscent of the t-SNI property. An n-share gadget is said to be
(t, p, ε)-random probing composable for some t ≤ n − 1, if given any set of t output shares of the
gadget and a set of internal observations constructed by adding each internal wire of the gadget
to the set independently with probability p, then both sets can be perfectly simulated using at most
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t shares of each of the gadget’s input sharings, with a failure probability equal to ε. While the t-
SNI property defines a fixed size for the set of output shares and the set of internal observations,
the random probing composability defines the set of internal observations according to the random
leakage definition and considers a failure event with a failure probability ε when the simulation is
unsuccessful. Then, it is easy to prove that given a circuit C composed of |C| gates (i.e operations),
its n-share variant C ′ where each gate is replaced by the corresponding (t, p, ε)-random probing
composable gadget is actually (p, |C|.ε)-random probing secure, considering that the probability of
dependence on the secret inputs in C ′ is when the simulation is unsuccessful in any of the composed
gadgets, which gives a negligible probability of |C|.ε. In a typical circuit, four types of gates or
operations are considered: standard addition and multiplication, copy gates which produce two fresh
copies of an input variable, and random gates which have no input and output a fresh random value.
Then, provided with a (t, p, ε)-random probing composable n-share gadget for each of these base
operations, one defines CC as the circuit compiler which outputs the n-share circuit C ′ out of the
base circuit C (i.e replaces each gate by the corresponding gadget).

The security level of a gadget in the random probing model is defined according to the simula-
tion failure event probability ε, in other words, it is defined as − log2(ε). Intuitively, the higher the
leakage probability p, the higher the failure probability ε, and for a fixed value p, a gadget can only
achieve a certain security level depending on its structure and the number of shares n. In order to
achieve arbitrary levels of security while considering fixed leakage probabilities, Belaïd et al. elab-
orate in [BCP+20] on the expansion strategy already introduced in a previous work [AIS18] but in
a theoretical and impractical manner. While the construction of [AIS18] relies on a t-out-n secure
MPC protocol in the passive security model, the advantage of Belaïd et al.’s strategy is that it can
be achieved and/or verified by simple atomic gadgets leading to simple and efficient constructions.
The basic principle of the gadget expansion strategy is as follows. Assume we have four n-share
gadgets Gadd, Gmult, Gcopy, Grand for each of the base operations and denote CC the circuit compiler
for these base gadgets3. We can derive four new n2-share gadgets by simply applying CC to each
gadget: G(2)

add = CC(Gadd), G(2)
mult = CC(Gmult), G

(2)
copy = CC(Gcopy) and G(2)

rand = CC(Grand). This
process simply consists in replacing each addition gate in the original gadget by Gadd, each multi-
plication gate by Gmult, each copy gate by Gcopy and each random gate by Grand, and by replacing
each wire by n wires carrying a sharing of the original wire. Doing so, we obtain n2-share gadgets
for the addition, multiplication, copy and random. This process can be iterated an arbitrary number
of times, say k, to an input circuit C:

C
CC−−−→ C1

CC−−−→ · · · CC−−−→ Ck .

The first output circuit C1 is the original circuit in which each gate is replaced by a base gadget Gadd,
Gmult, Gcopy or Grand. The second output circuit C2 is the original circuit C in which each gate is
replaced by an n2-share gadget G(2)

add, G(2)
mult, G

(2)
copy or G(2)

rand as defined above. Equivalently, C2 is the
circuit C1 in which each gate is replaced by a base gadget. In the end, the output circuit Ck is hence
the original circuit C in which each gate has been replaced by a k-expanded gadget and each wire
has been replaced by nk wires carrying an (nk)-linear sharing of the original wire. The underlying
compiler is called expanding circuit compiler. In other words, given a circuit compiler CC with the
four base gadgets and an expansion level k, the expanding circuit compiler takes as input a base
circuit C and outputs the compiled circuit Ck as described above.

The goal of the expansion strategy in the context of random probing security is to replace the

3Observe that an n-share gadget Grand for a random gate can simply consist in n independent random gates. This
trivial construction for Grand is sufficient to achieve the desired properties since there are no intermediate operations.

Page 20/34



VERISICC L2.2: Formal methods for the verification of countermeasures AAP FUI25

leakage probability p of a wire in the original circuit by the failure event probability ε in the subse-
quent gadget simulation. If this simulation fails then one needs the full input sharing for the gadget
simulation, which corresponds to leaking the corresponding wire value in the base case. The secu-
rity is thus amplified by replacing the probability p in the base case by the probability ε (assuming
that we have ε < p). If the failure event probability ε can be upper bounded by some function of the
leakage probability: ε < f(p) for every leakage probability p ∈ [0, pmax] for some pmax < 1, then the
expanding circuit compiler with expansion level k shall result in a security amplification as

p = ε0
f−−→ ε1

f−−→ · · · f−−→ εk = f (k)(p) ,

which for an adequate function f (eg f : p 7→ p2) provides exponential security.

In order to get such a security expansion, the gadgets must satisfy a stronger notion than the
composability notion which is called (t, p, ε)-random probing expandability. In the evaluation of ran-
dom probing composability, the failure event in the simulation of a gadget means that more than t
shares from one of its input sharings are necessary to complete a perfect simulation. For a gadget
to be expandable, slightly stronger notions than random probing composability are needed. As first
requirement, a two-input gadget should have a failure probability which is independent for each input.
This is because in the base case, each wire as input of a gate leaks independently. Typically, the
probability that the simulator needs more than t shares of the first input (respectively second input) for
the simulation would be ε1 (respectively ε2), and more ssimply with ε1 = ε2. On the other hand, dur-
ing the expansion process of a gadget, in case of failure event in the child gadget (i.e the i-expanded
gadget before being expanded into a i+ 1-expanded gadget), the overall simulator should be able to
produce a perfect simulation of the full output (that is the full input for which the failure occurs). To do
so, the overall simulator is given the clear output (which is obtained from the simulation of the base
case) plus any set of n− 1 output shares. Hence, to prove that an n-share gadget is (t, p, ε)-random
probing expandable (with 2 inputs and 1 output for simplicity), there are two cases to consider:

• whenever the simulator is given a set of at most t output shares, the simulation process is
similar to the case of random probing composability except for the failure events considered
independently for each input.

• whenever the simulator is given a set of more than t output shares, he tries to replace it with any
set of n− 1 output shares and produce a perfect simulation of these output shares along with
the internal probes on the gadget, always considering a failure event probability ε independent
for each input sharing.

If a circuit compiler CC is equiped with four n-share gadgets which are (t, p, ε = f(p))-random prob-
ing expandable, then it is proved in [BCP+20] that the corresponding expanding compiler instantiated
with CC and an expansion level k is equiped with k-expanded gadgets which are random probing
expandable and achieve a security of εk = f (k)(p). Thus, on any input base circuit C, the expanding
compiler produces a nk-share circuit Ck with the same functionality as C and which is (p, c.|C|.εk)-
random probing secure for some small constant c specified in the published work [BCP+20], and for
a fixed probability p.

The complexity of the expanding compiler can be expressed in terms of a desired security level
κ. Specifically, if we consider that the failure probability ε is expressed as a function of the leakage
probability f(p) = cdp

d + O(pd+1) for some coefficient cd ∈ R and d ∈ R (d can be called as the
amplification order of f or of the gadget), then we need to achieve the security bound f (k)(p) ≤ 2−κ

with the expansion level k. It can be verified using mathematical simplifications that given a base
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circuit C, and a security level κ, the complexity of the resulting expanded nk-share circuit Ĉ using
the expanding compiler with the base failure function f(p) can be expressed as

|Ĉ| = O
(
|C| · κe

)
with e =

logN

log d
. (3)

where d is the amplification order, and N is a parameter proportional to the complexity of the base
gadgets of the expanding compiler in terms of number of gates or operations, i.e the complexities of
Gadd, Gcopy, Gmult and Grand. From the complexity formula, one can see that to get the best asymp-
totic complexity, one would need to achieve the best amplification order possible, while decreasing
the complexity of the underlying gadgets.

A verification tool named VRAPS ((V)erifier of (RA)ndom (P)robing (S)ecurity) has been devel-
oped which is able to compute the failure function f(p) of gadgets as well as determine the tolerated
leakage probability by such gadgets. The tool can verify (t, p, ε)-random probing expandability, but
also (p, ε)-random probing security and (t, p, ε)-random probing composability. The source code of
VRAPS is available at:

https://github.com/CryptoExperts/VRAPS

An implementation of the expanding compiler has been done as well and is publicly available at:

https://github.com/CryptoExperts/poc-expanding-compiler

The expanding compiler takes as input the base n-share gadgets and the expansion level and outputs
the k-expanded gadgets. A protected AES implementation is also included in the implementation as
an illustration, which takes as input any nk-share gadgets for k ∈ N. All technical details on the
expanding compiler can be found in the full version of the published paper [BCP+20]:

https://eprint.iacr.org/2020/786.pdf

The limitations of the expansion strategy are later studied by Belaïd et al. in [BRT21]. Namely,
they show the amplification order d of the n-share gadgets of the expanding compiler is bounded by

d ≤ bn+ 1

2
c, which gives a bound on the value that can be attained by the exponent e in equation (3)

for a given number of shares. They also look for gadgets which can achieve this bound on the
amplification order to have the best asymptotic complexity for the expansion strategy, while studying
some well-known gadgets in the state-of-the-art like ISW applied to the expanding compiler. All the
technical details on this study can be found in the full version of the published paper [BRT21]:

https://eprint.iacr.org/2021/434.pdf

3.2. Implementation of Core Gadgets

3.2.1. Constructions from [BCP+20]

In [BCP+20], Belaïd et al. provide a first instantiation of the expanding compiler with three 3-share
base gadgets Gadd, Gmult, Gcopy (recall that for Grand the trivial construction of 3 random gates is suf-
ficient). The order of the operations in the following gadgets follows the classical order of operations:

Gadd : z0 ← x0 + r0 + r4 + y0 + r1 + r3

z1 ← x1 + r1 + r5 + y1 + r2 + r4

z2 ← x2 + r2 + r3 + y2 + r0 + r5
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Gcopy : v0 ← u0 + r0 + r1; w0 ← u0 + r3 + r4

v1 ← u1 + r1 + r2; w1 ← u1 + r4 + r5

v2 ← u2 + r2 + r0; w2 ← u2 + r5 + r3

Gmult : u0 ← x0 + r5 + r6; u1 ← x1 + r6 + r7; u2 ← x2 + r7 + r5

v0 ← y0 + r8 + r9; v1 ← y1 + r9 + r10; v2 ← y2 + r10 + r8

z0 ←
(
u0 · v0 + r0

)
+
(
u0 · v1 + r1

)
+
(
u0 · v2 + r2

)
z1 ←

(
u1 · v0 + r1

)
+
(
u1 · v1 + r4

)
+
(
u1 · v2 + r3

)
z2 ←

(
u2 · v0 + r2

)
+
(
u2 · v1 + r3

)
+
(
u2 · v2 + r0

)
+ r4

Using the verification tool VRAPS, one can check that the failure function ε = f(p) of the ex-
panding compiler instantiated with the above gadgets is expressed as f(p) =

√
83p3/2 +O(p2) thus

with an amplification order d = 3/2. The condition ε < p which is necessary for the expansion strat-
egy to be effective as discussed above, imposes that the maximum tolerated leakage probability by
this compiler is pmax ≈ 2−8. This means that for a given circuit, as long as the leakage probability in
the random probing model does not exceed this value, the compiled circuit is considered secure after
applying the expansion with the desired expanded failure event probability. Using these gadgets, the
authors show that the corresponding expanding compiler has an asymptotic complexity formula from
equation (3) equal to O

(
|C| · κ7.5

)
for any base circuit C to be expanded.

The authors additionally compute the complexity in terms of number of gates for each of the
compiled gadgets G(k)

add, G(k)
copy, G(k)

mult for a given expansion level k. In Fig. 5, we plot the total number
of gates in each of the compiled gadgets as a function of the level k. For instance, for level k = 9 the
number of gates in the compiled gadgets is around 1012. For the latter level and assuming a leakage
probability of p ≈ 2−8 (which is the maximum this compiler can tolerate), a security of ε ≈ 2−76 can
be achieved.

Figure 5: Number of gates for G(k)
add, G(k)

copy, G(k)
mult circuits with respect to the level k.

Table 4 additionally shows the execution time in milliseconds of the compiled gadgets using the
compiler with several expansion levels k, when run in C on randomly generated 8-bit integers. For
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the generation of random variables, the authors consider that an efficient external random number
generator is available in practice, and so they simply use the values of an incremented counter vari-
able to simulate random gates. The compiled gadgets are the output of the open-source expanding
compiler implemented in python, which takes as input the base gadgets and the desired expansion
level, and outputs the corresponding k-expanded gadgets.

Table 4: Execution time (in ms, on an Intel i7-8550U CPU) for compiled gadgets G(k)
add, G(k)

copy, G(k)
mult

implemented in C.

k # shares Gadget Execution time

1 3
G

(1)
add 1, 69.10−4

G
(1)
copy 1, 67.10−4

G
(1)
mult 5, 67.10−4

2 9
G

(2)
add 2, 21.10−3

G
(2)
copy 2, 07.10−3

G
(2)
mult 9, 91.10−3

3 27
G

(3)
add 9, 29.10−2

G
(3)
copy 9, 84.10−2

G
(3)
mult 3, 67.10−1

It can be observed that both the complexity and running time grow by almost the same factor with
the expansion level, with multiplication gadgets being the slowest as expected. Base gadgets with
k = 1 roughly take 10−4 ms, while these gadgets expanded 2 times (k = 3) take between 10−2 and
10−1 ms. The difference between the linear cost of addition and copy gadgets, and the quadratic
cost of multiplication gadgets can also be observed through the gadgets’ complexities.

An n-share AES-128 implementation was developed in [BCP+20] in C as an illustration. The
source code of the algorithm is provided at the same github link than the open-source expanding
compiler. The same compiled gadgets above were used for base operations (addition, multiplication,
copy). Applying the same complexity analysis done previously on the complexities of the individual
gadgets,Fig. 6 display the total number of gates in the AES-128 encryption/decryption procedures
as functions of the level k. For instance, for the same security level of 2−76 exhibited earlier in this
section for the gadgets of Fig. 5, the AES-128 would have to be compiled at a level k = 9, and would
count around 1016 gates.
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Figure 6: Number of gates after compilation of AES-128 encryption/decryption circuits with respect
to the level k.

For the implementation, the authors chose the C 8-bit unsigned integer type, and considered
operations in GF(256). Table 5 shows the AES-128 execution time on a 16-byte message with 10
pre-computed sub-keys, using compiled gadgets G(k)

add, G(k)
copy, G(k)

mult, with respect to the expansion
level k and sharing order n = 3k. It can be seen that the execution time increases with the expansion
level with a similar growth as in Table 4. This is because the complexity of the AES circuit strongly
depends on the gadgets that are used to replace each gate in the original arithmetic circuit. For
example, with the above 3-share gadgets that tolerate a leakage probability of p ≈ 2−8, a 27-share
(k = 3) AES-128 takes almost 200 milliseconds to encrypt or decrypt a message.

Table 5: Standard and n-share AES-128 execution time (in ms, on an Intel i7-8550U CPU) using
compiled gadgets G(k)

add, G(k)
copy, G(k)

mult.

AES Version
Execution Time (in ms)

Encryption Decryption
Standard (no sharing) 0.06 0.05

3-share (k = 1) 1.08 1.07

9-share (k = 2) 11.71 10.26

27-share (k = 3) 200.29 197.70

3.2.2. Constructions from [BRT21]

While in [BCP+20] the authors try to find specific 3-share gadgets that have a good amplification
order and low failure probability, the authors of [BRT21] elaborate on the construction of expanding
compilers, specifically by looking for gadgets which achieve the optimal amplification order (i.e the

bound bn+ 1

2
c for n-share gadgets specified at the end of section 3.1), while having good complexi-

ties in terms of number of operations. This would allow to have optimal constructions in terms of the
exponent expressed in equation (3) for the expansion strategy in terms of the desired security level.

For linear gadgets Gadd and Gcopy, the authors first prove that constructing such gadgets can
be done using an underlying refresh gadget Grefresh, and which security reduces to the security of
the latter. The advantage of this approach is that it provides generic constructions for addition and
copy gadgets which can achieve the maximum amplification order for any number of shares n. Also,
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proving the security of a refresh gadget is usually easier than for more complicated addition and copy
gadgets, typically using a verification tool like VRAPS. Algorithm 1 displays the generic construction
for the copy gadget from a refresh gadget. It simply consists in refreshing the input sharing twice to
obtain two fresh copies. And algorithm 2 displays the generic construction for the addition gadget
from a refresh gadget. It simply consists in refreshing both input sharings before adding them.

Algorithm 1: Copy gadget Gcopy

Input : (a1, . . . , an) input sharing
Output: (e1, . . . , en), (f1, . . . , fn) fresh copies of (a1, . . . , an)
(e1, . . . , en)← Grefresh(a1, . . . , an);
(f1, . . . , fn)← Grefresh(a1, . . . , an);

Algorithm 2: Addition Gadget Gadd

Input : (a1, . . . , an), (b1, . . . , bn) input sharings
Output: (c1, . . . , cn) sharing of a+ b
(e1, . . . , en)← Grefresh(a1, . . . , an);
(f1, . . . , fn)← Grefresh(b1, . . . , bn);
(c1, . . . , cn)← (e1 + f1, . . . , en + fn);

The authors are able to show that the addition and copy gadgets from these constructions achieve
the same amplification order as the underlying refresh gadget. Thus, proving the security of the
refresh gadget for the expansion strategy directly implies the security of the constructed gadgets. For
instance, the authors also prove that the well-known ISW refresh gadget is actually random probing

expandable and achieves the bound on the amplification order of bn+ 1

2
c, and has a quadratic

complexity in the number of shares.

As for the multiplication gadget Gmult, the authors start by showing that the ISW multiplication
gadget is random probing expandable but does not achieve the maximal amplification order. In fact,

it achieves an order of bn+ 1

4
c. Using the ISW-based addition and copy gadgets and the ISW

multiplication gadget thus yields an expanding compiler achieving a quadratic complexity with an

overall amplification order of bn+ 1

4
c. Figure 7 shows the evolution of the complexity exponent from

equation (3) with the ISW-based expanding compiler (blue curve) and an expanding compiler which
uses the ISW-based addition and copy gadgets but assumes a multiplication gadget which reaches
the maximal amplification order (orange curve). The value of e clearly decreases as the number of
shares grows, and this decrease is faster for a small number of shares (5 ≤ n ≤ 10). It is also clear
that the decrease of the exponent with respect to the number of shares is faster with the expanding
compiler achieveing the maximal amplification order.
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Figure 7: Evolution of the complexity exponent e = log(N)/ log(d) from equation (3) with respect
to the number of shares n. The blue curve matches the instantiation with the ISW-based gadgets;
the orange curve assumes the optimal amplification order (i.e an improvement of the multiplication
gadget) with the same asymptotic complexity.

Hence, to reach the optimal amplification order for a generic number of shares n, one would
need a different multiplication gadget than ISW. The authors then introduce a new multiplication
gadget which starts by refreshing the input sharings before performing the product of shares. The
gadget’s algorithm is depicted in Algorithm 3.
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Algorithm 3: New multiplication gadget from [BRT21]
Input : (a1, . . . , an),(b1, . . . , bn) input sharings, {rij}1≤i≤n,1≤j≤n random values, refresh

gadget Grefresh

Output: (c1, . . . , cn) sharing of a · b
for i← 1 to n do

(b
(i)
1 , . . . , b

(i)
n )← Grefresh(b1, . . . , bn);

end
(a′1, . . . , a

′
n)← Grefresh(a1, . . . , an);

for i← 1 to n do
for j ← 1 to n do

pi,j ← a′i × b
(i)
j + ri,j ;

end
end
(v1, . . . , vn)← (0, . . . , 0);
(x1, . . . , xn)← (0, . . . , 0);
for i← 1 to n do

for j ← 1 to n do
vi ← vi + pi,j ;
xi ← xi + ri,j ;

end
end
for i← 1 to n do

ci ← vi + xi;
end
return (c1, . . . , cn);

The authors show that if the underlying Grefresh gadget from the above algorithm satisfies certain
properties similar to the ones needed for Grefresh in the generic addition and copy gadgets construc-
tions, then the multiplication gadget Gmult described in Algorithm 3 is random probing expandable

and achieves the maximum amplification order bn+ 1

2
c, while having a quadratic asymptotic com-

plexity (if we assume for instance the ISW-based refresh gadget or any refresh gadget which has
a quadratic complexity). Using the above multiplication gadget with the ISW-based generic addi-
tion and copy gadgets leads to an expanding compiler which complexity blowup from equation (3)
corresponds to the orange curve in Figure 7.

The authors finally provide 3-share and 5-share instantiations of expanding compilers which
achieve the optimal amplification orders and tolerate competitive leakage probabilities. Their 3-share
instantiation is based on the following refresh gadget which uses only two random values, better than
the 3-share ISW refresh gadget:

Grefresh : c1 ← r1 + a1

c2 ← r2 + a2

c3 ← (r1 + r2) + a3.
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This refresh gadget leads to the 3-share addition gadget:

Gadd : c1 ← (r1 + a1) + (r3 + b1)

c2 ← (r2 + a2) + (r4 + b2)

c3 ←
(
(r1 + r2) + a3

)
+
(
(r3 + r4) + b3

)
and the following 3-share copy gadget:

Gcopy : c1 ← r1 + a1; d1 ← r3 + a1

c2 ← r2 + a2; d2 ← r4 + a2

c3 ← (r1 + r2) + a3; d3 ← (r3 + r4) + a3.

For the 3-share multiplication, the authors use the gadget from Algorithm 3 instantiated with the
above 3-share refresh gadget:

Gmult : i1,1 ← r1 + b1; i1,2 ← r2 + b2; i1,3 ← (r1 + r2) + b3

i2,1 ← r3 + b1; i2,2 ← r4 + b2; i2,3 ← (r3 + r4) + b3

i3,1 ← r5 + b1; i3,2 ← r6 + b2; i3,3 ← (r5 + r6) + b3

a′1 ← r7 + a1; a′2 ← r8 + a2; a′3 ← (r7 + r8) + a3

c1 ← (a′1 · i1,1 + r1,1) + (a′1 · i1,2 + r1,2) + (a′1 · i1,3 + r1,3) + (r1,1 + r2,1 + r3,1)

c2 ← (a′2 · i2,1 + r2,1) + (a′2 · i2,2 + r2,2) + (a′2 · i2,3 + r2,3) + (r1,2 + r2,2 + r3,2)

c3 ← (a′3 · i3,1 + r3,1) + (a′3 · i3,2 + r3,2) + (a′3 · i3,3 + r3,3) + (r1,3 + r2,3 + r3,3).

Table 6 displays the results for the above gadgets obtained through the VRAPS tool. The second
column gives the complexity, where Na, Nc, Nm, Nr stand for the number of addition gates, copy
gates, multiplication gates and random gates respectively in each gadget. The third column provides
the amplification order of the gadget. And the last column gives the maximum tolerated leakage
probability. The last row gives the global complexity, amplification order, and maximum tolerated
leakage probability for the expanding compiler using these three gadgets from the results provided
in [BCP+20].

Table 6: Results for the 3-share gadgets achieving the bound on the amplification order.

Gadget Complexity
(Na, Nc, Nm, Nr)

Amplification
order

log2 of maximum
tolerated proba

Grefresh (4, 2, 0, 2) 2 −5.14

Gadd (11, 4, 0, 4) 2 −4.75

Gcopy (8, 7, 0, 4) 2 −7.50

Gmult (40, 29, 9, 17) 2 −7.41

Compiler O(|C| · κ3.9) 2 −7.50

As for the 5-share construction, the authors use the following 5-share refresh gadget which re-

Page 29/34



VERISICC L2.2: Formal methods for the verification of countermeasures AAP FUI25

quires five uniform random values, instead of ISW-refresh:

Grefresh : c1 ← (r1 + r2) + a1

c2 ← (r2 + r3) + a2

c3 ← (r3 + r4) + a3

c4 ← (r4 + r5) + a4

c5 ← (r5 + r1) + a5.

This gadget only uses n randoms for an n-share construction, and while it does not achieve enough
security in the generic case (unless the refresh block is iterated on the input a certain number of
times [BBD+20, BDF+17]), it proves to be more than enough to achieve the necessary amplification
order for the 5-share constructions. The authors use a variant of the original version (also suggested
in [BBD+20]): they choose to sum the random values first (thus obtaining a sharing of 0) before
adding them to the input shares. The idea is to avoid using the input shares in any of the intermediate
variables, so that input shares only appear in the input variables {ai}1≤i≤n and the final output
variables {ci}1≤i≤n. Intuitively, this trick allows to have less failure tuples in the gadget because
there are less variables that could leak information about the input. This is validated experimentally
where better results are obtained in terms of amplification order and tolerated leakage probability
for small gadgets. From this circular refresh, the authors obtain an addition gadget with ten random

values which reaches the upper bound on the amplification order:

Gadd : c1 ←
(
(r1 + r2) + a1

)
+
(
(r6 + r7) + b1

)
c2 ←

(
(r2 + r3) + a2

)
+
(
(r7 + r8) + b2

)
c3 ←

(
(r3 + r4) + a3

)
+
(
(r8 + r9) + b3

)
c4 ←

(
(r4 + r5) + a4

)
+
(
(r9 + r10) + b4

)
c5 ←

(
(r5 + r1) + a5

)
+
(
(r10 + r6) + b5

)
and a copy gadget with also ten random values and which also reaches the upper bound on the
amplification order:

Gcopy : c1 ← (r1 + r2) + a1; d1 ← (r6 + r7) + a1

c2 ← (r2 + r3) + a2; d2 ← (r7 + r8) + a2

c3 ← (r3 + r4) + a3; d3 ← (r8 + r9) + a3

c4 ← (r4 + r5) + a4; d4 ← (r9 + r10) + a4

c5 ← (r5 + r1) + a5; d5 ← (r10 + r6) + a5.

The following construction is a 5-share instantiation of the multiplication gadget described in Algo-
rithm 3. For the input refreshing, the 5-share circular refresh gadget described above is used. The
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gadget advantageously achieves the optimal amplification order with 55 random values:

Gmult : i1,1 ← (r1 + r2) + b1; i1,2 ← (r2 + r3) + b2; i1,3 ← (r3 + r4) + b3;

i1,4 ← (r4 + r5) + b4; i1,5 ← (r5 + r1) + b5

i2,1 ← (r6 + r7) + b1; i2,2 ← (r7 + r8) + b2; i2,3 ← (r8 + r9) + b3;

i2,4 ← (r9 + r10) + b4; i2,5 ← (r10 + r6) + b5

i3,1 ← (r11 + r12) + b1; i3,2 ← (r12 + r13) + b2; i3,3 ← (r13 + r14) + b3;

i3,4 ← (r14 + r15) + b4; i3,5 ← (r15 + r11) + b5

i4,1 ← (r16 + r17) + b1; i4,2 ← (r17 + r18) + b2; i4,3 ← (r18 + r19) + b3;

i4,4 ← (r19 + r20) + b4; i4,5 ← (r20 + r16) + b5

i5,1 ← (r21 + r22) + b1; i5,2 ← (r22 + r23) + b2; i5,3 ← (r23 + r24) + b3;

i5,4 ← (r24 + r25) + b4; i5,5 ← (r25 + r21) + b5

a′1 ← (r26 + r27) + a1; a′2 ← (r27 + r28) + a2; a′3 ← (r28 + r29) + a3;

a′4 ← (r29 + r30) + a4; a′5 ← (r30 + r26) + a5

c1 ← (a′1 · i1,1 + r1,1) + (a′1 · i1,2 + r1,2) + (a′1 · i1,3 + r1,3) + (a′1 · i1,4 + r1,4)

+(a′1 · i1,5 + r1,5) + (r1,1 + r2,1 + r3,1 + r4,1 + r5,1)

c2 ← (a′2 · i2,1 + r2,1) + (a′2 · i2,2 + r2,2) + (a′2 · i2,3 + r2,3) + (a′2 · i2,4 + r2,4)

+(a′2 · i2,5 + r2,5) + (r1,2 + r2,2 + r3,2 + r4,2 + r5,2)

c3 ← (a′3 · i3,1 + r3,1) + (a′3 · i3,2 + r3,2) + (a′3 · i3,3 + r3,3) + (a′3 · i3,4 + r3,4)

+(a′3 · i3,5 + r3,5) + (r1,3 + r2,3 + r3,3 + r4,3 + r5,3)

c4 ← (a′4 · i4,1 + r4,1) + (a′4 · i4,2 + r4,2) + (a′4 · i4,3 + r4,3) + (a′4 · i4,4 + r4,4)

+(a′4 · i4,5 + r4,5) + (r1,4 + r2,4 + r3,4 + r4,4 + r5,4)

c5 ← (a′5 · i5,1 + r5,1) + (a′5 · i5,2 + r5,2) + (a′5 · i5,3 + r5,3) + (a′5 · i5,4 + r5,4)

+(a′5 · i5,5 + r5,5) + (r1,5 + r2,5 + r3,5 + r4,5 + r5,5).

Table 7 gives the results for the above gadgets obtained through the VRAPS tool.

Table 7: Results for the 3-share gadgets achieving the bound on the amplification order.

Gadget Complexity
(Na, Nc, Nm, Nr)

Amplification
order

log2 of maximum
tolerated proba

Grefresh (10, 5, 0, 5) 3 −4.83

Gadd (25, 10, 0, 10) 3 [−6.43,−3.79]

Gcopy (20, 15, 0, 10) 3 [−6.43,−5.78]

Gmult (130, 95, 25, 55) 3 [−12.00,−6.03]

Compiler O(|C| · κ3.23) 3 [−12.00,−6.03]
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From Tables 6 and 7, it can be seen that the asymptotic complexity is better for the instantiation
based on 5-share gadgets as they provide a better amplification order with limited overhead. While
this result can seem to be counterintuitive, it actually comes from the fact that each gadget will be
expended less in the second scenario. The authors could only obtain an interval [2−12, 2−6] for
the tolerated leakage probability because it was computationally too expensive to obtain a tighter
interval from the VRAPS tool. Meanwhile, one can consider that the best complexity O(|C| · κ3.2)
comes at the price of a lower tolerated leakage probability of 2−12 (5-share gadgets) compared to the
O(|C| ·κ3.9) complexity and 2−7.5 tolerated leakage probability obtained for the 3-share instantiation.
In comparison, the previous instantiation of the expanding compiler [BCP+20] could only achieve a
complexity of O(|C| · κ7.5) for maximum tolerated probabilities of 2−8.
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