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1. Introduction

1.1. The masking countermeasure
Masking is the most widely used countermeasure against side-channel attacks for block-ciphers and
symmetric-key algorithms. In a first-order countermeasure, all intermediate variables x are masked
into a pair (x′, r) where r is a randomly generated value and x′ = x ⊕ r. For such countermea-
sure, it is usually straightforward to verify its security against first-order attacks; namely it suffices to
check that all intermediate variables have the uniform distribution, or at least that their distribution is
independent from the key; therefore an attacker processing the side-channel leakage of intermediate
variables separately (as in a first-order attack) does not get useful information.

However second-order attacks combining the leakage on x′ and r can be mounted in practice,
so it makes sense to design masking algorithms resisting higher-order attacks. This is done by
extending Boolean masking to n shares with x = x1 ⊕ · · · ⊕ xn; in that case an implementation
should be resistant against t-th order attacks, in which the adversary combines leakage information
from at most t < n intermediate variables.

1.2. Security proofs
In principle any countermeasure against high-order attacks should have a security proof, but such
proof can be either missing, incomplete, or incorrect.

The first step is to specify what it means for a masking countermeasure to be secure, i.e. what
is the security model. Such formalization was initiated by Ishai, Sahai and Wagner in [ISW03]. In
this model, the adversary can probe at most t wires in the circuit, but he should not learn anything
about the secret key. The approach for proving security is based on simulation: one must show that
any set of t wires probed by the adversary can be perfectly simulated without the knowledge of the
secret-key. This shows that the t probes do not bring any useful information to the attacker, since he
could run this simulation by himself.

More precisely, the simulation technique consists in showing that any set of t probes can be
perfectly simulated by the knowledge of only a proper subset of the input shares xi. At the beginning
of the algorithm an original variable x is shared into n shares xi. When x is part of the secret-key, this
pre-sharing cannot be probed by the adversary. Since any subset of at most n − 1 input shares xi
are uniformly and independently distributed, the simulation of the probed variables can be performed
without knowing the secret-key.

The main result in [ISW03] is to show that any circuit C can be transformed into a new circuit
C ′ of size O(t2 · |C|) that is resistant against an adversary probing at most t wires in the circuit.
The construction is based on secret-sharing every variable x into n shares with x = x1 ⊕ · · · ⊕ xn,
and processing the shares in a way that prevents a t-limited adversary from learning any information
about the initial variable x, using n ≥ 2t+ 1 shares.

One advantage of the ISW model is that its conceptual simplicity makes it amenable to formal
verification. This has been demonstrated in a series of works, including [MOPT12, BRNI13, EWS14,
BBD+15a, BBD+16a, ?, ZGSW18, BIKM18].

The most immediate benefit of formal verification is its automation, allowing to deal with the
combinatorial complexity of proving masked implementations secure. This complexity is specially
significant for implementations where secrets are split into a large number of shares; we call such
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implementations higher-order. Perhaps more importantly, formal verification has also been instru-
mental for advancing the state-of-the-art in masking. First, formal verification tools have been used
to reduce the randomness cost of existing schemes. Second, strong non-interference, which solves
a long-standing problem of compositional reasoning for masking, has first emerged in the context of
formal verification, before being adopted in the literature on masking.

Another model is the noisy leakage model introduced by Chari et al. [CJRR99] then extended
by Prouff and Rivain [PR13]. It describes many realistic side-channel attacks where an adversary
obtains each intermediate value perturbed with a “δ-noisy" leakage function. A leakage function
L is called δ-noisy if for a uniformly random variable Y we have SD(Y ;Y |LY ) ≤ δ, with SD the
statistical distance. It was shown in [DFS15] that an equivalent condition is that the leakage is
not too informative, where informativity is measured with the standard notion of mutual information
MI(Y ;LY ). In contrast with the ε-probing model, the adversary obtains noisy leakage for each
intermediate variable. For example, in the context of masking, he obtains L(Yi,Ri) for all the shares
Yi, which is reflective of actual implementations where the adversary can potentially observe the
leakage of all these shares, since they are all present in leakage traces.

A third and intermediate model is getting more and more important in the literature recently, the
random probing model. Basically, it assumes that every wire or intermediate variable in a circuit leaks
with some probability p. The circuit is then secure if the probability to leak intermediate variables
which jointly depend on the secrets is negligible. This model benefits from being more realistic than
the probing model since it captures a larger set of attacks. For instance, horizontal attacks that may
exploit the multiple use of a variable to get information on its value is not captured in the probing
model while it is handled in the random probing model where the probability to get the value is
increased by the repetition.

Duc et al. showed that security against probing attacks implies random probing security for some
probability which itself implies security against noisy leakages [DDF14]. This result leads to the
natural strategy of proving security in the (simpler) probing model while stating security levels based
on the concrete information leakage evaluations (as discussed in [DFS15]).

2. Formal verification tools of masking

A first sequence of work manages to provide verification of masked implementations, but is mainly
restricted to first-order masking schemes. We give an overview below and then focus on recent tools
that achieve verification of higher-order verification schemes.

2.1. Verification of first-order masking schemes
In 2012, Moss et al. [MOPT12] implement the first automated method to verify and build masked
implementations. Basically, they design a type-based masking compiler that tracks variables that
are masked by random values and iteratively modifies an unprotected program until all secrets are
masked. This strategy achieves first-order probing security. Although efficient and scalable, this
method is overly conservative and rejects secure programs.

Bayrak et al. [BRNI13] investigate in 2013 the logic-based verification which offers interesting
trade-offs between efficiency and expressiveness. Their SMT-based method is able to analyze the
probing security of first-order masked implementations by proving statistical independence between
secrets and leakage. It was later extended by Eldib, Wang and Schaumont [EWS14] to achieve
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higher-order masking verification with a method based on model counting. The authors use in-
cremental verification in order to circumvent the resulting exponential blow-up. Despite these im-
provements, the scope of the method remains limited on concrete examples. Finally, Zhang et
al. [ZGSW18] provide additional improvements in terms of precision and scalability with their tool
SCInfer (partly inspired from maskVerif below).

2.2. Verification of higher-order masking schemes
In the following, we focus only on recent tools able to provide verifications of concrete masking
schemes at higher orders.

2.2.1. maskVerif

In 2015, Barthe et al. exhibited an automated method to prove the security of masked implementation
against t-th order attacks, for small values of t [BBD+15a]. The method only works for small values
of t because the number of possible t-tuples of intermediate variables grows exponentially with t. To
formally prove the security of a masking algorithm, the authors describe an algorithm to construct
a bijection between the observations of the adversary (corresponding to a t-tuple of intermediate
variables) and a distribution that is syntactically independent from the secret inputs; this implies
that the adversary learns nothing from this particular t-tuple of intermediate variables. All possible
t-tuples of intermediates variables are then examined by exhaustive search.

The authors obtain a formal verification of various masked implementations, up to second order
masked implementation of AES, and up to 5-th order for the masked Rivain-Prouff multiplication
[RP10a]. In particular, the authors were able to rediscover some known attacks and discover new
ways of attacking already broken schemes.

The main drawback of this approach is that it can only work for small orders t and small programs,
since the running time is exponential in t and the size of the program.

The tool allows to check various security properties, like probing security, non-interference (NI)
and strong non-interference (SNI). It is also able to perform security analysis in presence or in ab-
sence of glitches from its extension in 2019, or with transition or without transition. It provides a small
intermediate language for describing implementation but it can also take Verilog implementation as
input.

2.2.2. CheckMasks

A simplification and extension of the formal verification results from [BBD+15a] and [BBD+16a] was
described in [?]. Two complementary approaches were described: a generic approach for the for-
mal verification of any circuit, but for small attack orders only (as in [BBD+15a]), and a specialized
approach for the verification of specific circuits, but at any order (as in [BBD+16a]).

For the generic verification of countermeasures at small orders, the author uses a different formal
language from [BBD+15a]. In particular the underlying circuit is represented as nested lists, which
leads to a simple and concise implementation in Common Lisp, a programming language well suited
to formal manipulations. The author is then able to formally verify the security of the Rivain-Prouff
countermeasure with very few lines of code. The running times for formal verification are similar to
those in [BBD+15a]. Thanks to this simpler approach, the author also extends [BBD+15a] to handle
a combination of arithmetic and Boolean operations, and formally verifies the security of the recent
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Boolean to arithmetic conversion algorithm from [Cor17b]. This approach is implemented in a tool,
referred to as CheckMasks.

For the verification of specific gadgets at any order (instead of small orders only with the generic
approach), the technique is quite different from [BBD+16a] and consists in applying elementary
transforms to the circuit, until the t-NI or t-SNI properties become straightforward to verify. For
a set of well-chosen elementary transforms, the formal verification time becomes polynomial in t
(instead of exponential with the generic approach); this implies that the formal verification can be
performed at any order. The CheckMasks tool provides a formally verified proof of the t-SNI property
of the multiplication algorithm in the Rivain-Prouff countermeasure, and of the mask refreshing based
on the same multiplication algorithm; in both cases the running time of the formal verification is
polynomial in the number of shares n.

Finally, the author shows how to get the best of both worlds, at least for simple circuits: he shows
how to automatically apply the circuit transforms that lead to a polynomial time verification, based on
a limited set of generic rules. Namely he identifies a set of three simple rules that enable to auto-
matically prove the t-SNI property of the multiplication based mask refreshing, and also two security
properties of mask refreshing considered in [Cor17b]. The source code of CheckMasks verification
tool is publicly available at [Cor17a], under the GPL v2.0 license.

3. Needs from the industry

Strong performance constraints exist for embedded implementations. Namely embedded processors
usually have a relatively low frequency compared to PC processors, a low amount of memory, and
a slow TRNG. In general the goal is to minimize the cost of the processor, and its energy consump-
tion. For best performances, cryptographic algorithms are most often implemented in C or even in
assembly for critical parts. From the deliverable “L1.2: Définitions des besoins”, the following needs
have been identified by the industrial partners:

1. Work directly from assembly language implementation.

2. Better identify the side-channel vulnerabilities: when a leakage occurs, the exact position of
the leakage should be determined.

3. Take into account all low-level operations used in an implementation (not only Xors), such as
for example arithmetic operations in Boolean to arithmetic conversions, and look-up tables.

4. The CheckMasks approach

The generic verification of the masking countermeasure was initiated by Barthe et al. in [BBD+15b]
based on the EasyCrypt framework. The approach consists in considering all possible t-tuples of
intermediate variables, and proving that for each particular t-tuple the adversary learns nothing from
the secret key. The authors obtained a formal verification of various masked implementations, up
to second order masked implementation of AES, and up to 5-th order for the masked Rivain-Prouff
multiplication [RP10b].

In this section we consider the CheckMasks tool described in [?]; the source code of the Check-
Masks library is publicly available at [Cor17a], under the GPL v2.0 license. The circuit to be verified is
represented as nested lists, which leads to a simple and concise implementation in Common Lisp, a
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x1 · · · xi · · · xn−1 xn

r1

...
ri

...
rn−1

y1 · · · yi · · · yn−1 yn

Figure 1: The RefreshMasks algorithm, with the randoms ri accumulated on the last column.

programming language well suited to formal manipulations. In [?] a formal verification of the security
of the Rivain-Prouff multiplication is described, with running times similar to those in [BBD+15b].

4.1. Program representation and formal manipulations
In CheckMasks, a circuit is represented with nested lists, using the prefix notation. Consider for
example the circuit taking as input x and y and outputting x⊕ y; we represent it as (+ X Y). Similarly
the circuit computing x · y is represented as (* X Y). To represent more complex circuits the lists
are recursively nested. For example, to represent the circuit x · (y ⊕ z), we write (* X (+ Y Z)). If a
circuit has many outputs, we represent the list of outputs without any prefix operator; for example,
the circuit outputting (x⊕ y, x · y) can be represented as ((+ X Y) (* X Y)).

Consider for example the RefreshMasks algorithm, as illustrated in Fig. 1. It is easy to write
a program in Common Lisp that generates the circuit corresponding to RefreshMasks; we refer to
[Cor17a] for the source code. For example, we obtain for n = 3 input shares:

> ( RefreshMasks ’ ( X1 X2 X3 ) )
( (+ R1 X1) (+ R2 X2) (+ R2 (+ R1 X3 ) ) )

which corresponds to y1 = r1 ⊕ x1, y2 = r2 ⊕ x2 and y3 = r2 ⊕ (r1 ⊕ x3). Note that the above
RefreshMasks function in Common Lisp takes as input a list of n shares (here n = 3) and outputs
a list of n shares; therefore it can be easily composed with other such Common Lisp functions to
create more complex circuits.

In order to verify a security property of a gadget, one performs a sequence of elementary sub-
stitutions. Consider for example the two output variables (+ R1 X1) and (+ R2 (+ R1 X3)) from above.
We would like to show that these two variables are uniformly and independently distributed. Since
the random R2 is used only once in those two outputs, it can play the role of a one-time pad, and we
can perform the following substitution in the second output:

(+ R2 (+ R1 X3)) −→ R2

Namely, since R2 is used only once, the distribution of (+ R2 (+ R1 X3)) is the same as the distribution
of R2. More generally, when a random R is used only once, we can perform the substitution:

(+ R X) −→ R (1)

Starting with the above list of two output variables, we can perform the following sequence of
elementary substitutions:

((+ R1 X1) (+ R2 (+ R1 X3))) −→ ((+ R1 X1) R2) −→ (R1 R2)
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The first substitution is possible because R2 is used only once, and the second substitution is possible
because R1 is used only once after the first substitution. Since we have obtained two distinct randoms
(R1 R2) at the end, the two output variables are uniformly and independently distributed, as required.

In CheckMasks, the security properties are verified by performing a sequence of elementary
transformations of a circuit. These transformations are generally easy to implement in Common
Lisp. However, it seems difficult for the CheckMasks tool to work directly with an assembly language
implementation of a cryptographic algorithm, as in such representation a formal transformation such
as (1) would be much harder to perform.

4.2. Identification of side-channel vulnerabilities
In the CheckMasks tool, side-channel vulnerabilities are generally easy to identify. Consider for ex-
ample the above RefreshMasks algorithm. While the RefreshMasks algorithm achieves the t-NI
property, it is easy to see that it does not achieve the stronger t-SNI property, as already observed in
[BBD+16b]. Namely one can probe the output y1 = r1 ⊕ x1 and the internal variable yn,1 = r1 ⊕ xn;
see Fig. 1. This gives y1 ⊕ yn,1 = x1 ⊕ xn and therefore the knowledge of both inputs x1 and xn
is required for the simulation, while only t = 1 internal variables has been probed (and therefore,
at most one input xi can be used for the simulation to achieve the t-SNI property). More generally,
using the CheckMasks formal tool, we can obtain the list of all (n − 1)-tuples of probes that break
the t-SNI property of RefreshMasks with n input shares. For example, we obtain for n = 4:

> ( Check−Refreshmasks−Non−SNI 4 : a l l ’ t )
I npu t : (X1 X2 X3 X4)
Output : ( (+ R1 X1) (+ R2 X2) (+ R3 X3) (+ R3 (+ R2 (+ R1 X4 ) ) ) )
( (+ R1 X1) X2 (+ R1 X4 ) )
( (+ R1 X1) (+ R2 X2) (+ R1 X4 ) )
( (+ R1 X1) (+ R2 X2) (+ R2 (+ R1 X4 ) ) )
( (+ R1 X1) X3 (+ R1 X4 ) )
( (+ R1 X1) (+ R3 X3) (+ R1 X4 ) )
( (+ R1 X1) (+ R1 X4) (+ R3 (+ R2 (+ R1 X4 ) ) ) )

Consider for example the first 3-tuple of probes ((+ R1 X1) X2 (+ R1 X4)). We see that the substi-
tution rule (1) does not apply as the random R1 occurs twice. Therefore the simulation of this 3-tuple
requires the knowledge of the 3 inputs x1, x2 and x4; this contradicts the t-SNI property, as only
t = 2 intermediate variables x2 and y4,1 = x4 ⊕ r1 are probed, since y1 = x1 ⊕ r1 is an output
variable. This shows that side-channel vulnerabilities are easy to identify in CheckMasks.

4.3. Taking into account arithmetic operations

In the description of the CheckMasks tool in [?], it was shown how to extend [BBD+15b] to handle a
combination of arithmetic and Boolean operations, with an application to the full formal verification of
the Boolean to arithmetic conversion algorithm from CHES 2017 [Cor17b]. We recall the approach
below.

In order to verify the (n − 1)-SNI property of the Boolean to arithmetic algorithm from [Cor17b],
we must check that for all possible (n − 1)-tuples of intermediate variables, the number of input
variables xi’s that remain after the application of a sequence of simplification rules is always ≤ tc,
where tc is the number of non-output variables in the (n− 1)-tuple.

For the verification of the RefreshMasks Boolean circuits in the previous section, we used the
single simplification rule (1), namely replacing x⊕r by r when the random r appears only once in the
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intermediate variables. For the verification of circuits combining Boolean and arithmetic operations,
we use the following sequence of rules, where Ψ(x, y) = x⊕ y− y. As explained in [?], the ordering
of the application of the rules matters, see Fig. 2.

• Rule 1: when ω = x1 + x2 mod 2k must be simulated, simulate both x1 and x2.

• Rule 2: from the affine property of the function Ψ, replace Ψ(x, y)⊕Ψ(x, z) by x⊕Ψ(x, y⊕z).

• Rule 3: from the definition of Ψ, replace Ψ(x, y) by (x⊕ y)− y mod 2k.

• Rule 4: when a random r is used only once, replace x⊕ r by r, and similarly for x+ r mod 2k

and x− r mod 2k.

• Rule 5: when a random r is not used in two intermediate variables e1 and e2, replace the
simulation of (e1 ⊕ r, e2 ⊕ r) by the simulation of (r, (e1 ⊕ r) ⊕ e2); this corresponds to the
change of variable r′ = e1 ⊕ r.

• Rule 6: when Ψ(x1, x2) must be simulated, simulate both x1 and x2.

R1 R2 R4 R3+R4 R5 R6
no

yes yes
no no

yes yes

no

Figure 2: The rule application strategy for the formal verification of Boolean to arithmetic conversion.

n #var. #tuples Security Time
2 11 11 X ε

3 48 1,128 X 0.08 s
4 133 383,306 X 85 s
5 312 387,278,970 X 88 h

Table 1: Formal verification of the t-SNI property of the Boolean to arithmetic conversion algorithm
from [Cor17b], for t = n− 1.

We summarize in table 1 the timing of formal verification for the Boolean to arithmetic conversion
algorithm in [Cor17b]. In summary, the CheckMasks tool can handle a combination of Boolean and
arithmetic operation. However, handling other operations such as look-up tables (as in the table
recomputation countermeasure from [Cor14]) seems more challenging.

5. The maskVerif approach

In this section we consider the maskVerif tool described in [BBD+15c, BBC+19] and publicly avail-
able at [Gré]. The maskVerif tool allows to describe circuits using an internal representation which
is relatively flexible. It takes as input the description of Boolean circuits in a specific language, then
computes the set of observations, and performs the analysis for different security properties: prob-
ing, NI and SNI security. In the following, we explain how it behaves regarding the three needs from
the industry recalled in Section 3.
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5.1. Program representation
maskVerif admits two input representations: a simple DSL (Domain Specific Language) allowing to
describe masking algorithms, and a Verilog hardware representation. All along this subsection, we
illustrate the different steps which lead to a formal verification from these two possible representations
with the example of the DOM AND gadget presented in Figure 3.

a.[0]

b.[0]

a.[1]

b.[1]

⊗
⊗
⊗
⊗

r

⊕
⊕ FF

FF

⊕
⊕ c.[1]

c.[0]

Figure 3: Graph representation of procedure DOM AND where storage in registers is indicated with
blue circles

The first input representation is a simple DSL allowing to describe a masked algorithm. In this
DSL, the DOM AND algorithm can be expressed as follow:

proc DOM_AND:
inputs: a[0:1], b[0:1]
(* It returns one input split in two shares *)
outputs: c[0:1]
(* r is a fresh random local to the algorithm *)
randoms: r;

a0b0 := a[0] * b[0];
a0b1 := a[0] * b[1];
a1b0 := a[1] * b[0];
a1b1 := a[1] * b[1];
aux0 = ![r + a0b1];
aux1 = ![r + a1b0];
c[0] := a0b0 + aux0;
c[1] := a1b1 + aux1;

end

The first kind of assignment (e.g., a0b0 := a[0] ∗ b[0]) will propagate glitches, while the second
one (e.g., aux0 =![r + a0b1]) will stop the glitch propagation.

Then a simple command allows to check for the security of the algorithm with respect to different
security models:

• probing security with glitches: Probing ISW_AND

• NI or SNI properties with glitches: NI ISW_AND or SNI ISW_AND

• probing, NI, SNI properties without glitches simply add the prefix: noglitch.

Page 10/16



VERISICC L2.1: Evaluation of existing solutions AAP FUI25

• by default the verification order is the number of shares of the inputs minus 1, but it can also
be specified (this is particularly useful for threshold implementations):

noglitch order 2 Probing ISW_AND.

The second solution for the user is to provide a masked Verilog implementation of its algorithms
and to set various parameters. Using the off-the-shelf tool (yosis), it is possible to generate an
implementation in the ilang intermediate format.

Figure 4: Diplay of DOM AND verilog implementation via Yosys

Once generated, the .ilang file is manually annotated with keywords in order to specify the public
variables, the secret input variables, the secret output variables, and the random variables at the
beginning of the procedure. In our example, the added notations are:

## public \ClkxCI \RstxBI
## input \XxDI
## input \YxDI
## output \QxDO
## random \ZxDI

\XxDI is in the implementation a vector of wires (of size 2) containing the two shares of the first
secret input, \XxDI corresponds to second input, \QxDO contains the output shares, and \ZxDI is a
random input share. The ## annotations correspond to ilang comments, so they can be ignored by
ilang tools. In some cases, the input of the circuit is not so naturally split into shares. For example, it
is possible to define the same gadget taking only one vector of secret input of size 4, say Z with the
following semantic

Z = {\XxDI.[0], \YxDI.[0], \XxDI.[1], \YxDI.[1]}.

This can be captured by using the following annotations for secret inputs (or outputs):

## input : a Z[0 2]
## input : b Z[1 3]
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Next, maskVerif generates from the annotated .ilang implementation an internal representation
with a symbolic representation of leakage at each program point. At this point, verification can start
as before.

For the moment, maskVerif is not able to take into account assembly implementation. The tool
needs to be extended to that end.

5.2. Identification of side-channel vulnerabilities
For the different input languages of maskVerif, the tool is able determine which tuple of observation
is vulnerable, and to display the error location. For example, take the following (insecure) implemen-
tation of a masked AND:

proc ISW_AND:
inputs: a[0:1], b[0:1]
outputs: c[0:1]
randoms: r;

c[0] := a[0] * b[0];
a0b1 := a[0] * b[1];
a1b0 := a[1] * b[0];
c[1] := a[1] * b[1];
aux := a0b1;
aux := aux + a1b0;
c[0] := c[0] ;
c[1] := c[1] + aux;

end

Trying to check NI security we obtain:

Checking NI for ISW_AND: (no transition,no glitch)
011 tuples to check
Error ISW_AND is not NI:
Cannot check
(* stdin: line 11 (2-21) *)
(* from [a.[0] * b.[1] + a.[1] * b.[0] *)

which indicates that the observation line 11 can leak information.

5.3. Taking into account arithmetic operations
While the algorithms used by maskVerif are not specific to Boolean operations, maskVerif only
provides Boolean operations. This is not limiting when considering Boolean circuit but this is limiting if
we want to study assembly language implementations. For the need of the project, the first extension
we have done is to add more base types like uint8, uint16, uint32 and uint64 with their corresponding
Boolean operations.

The second extension is the possibility to add new operators. In fact the only important point for
the algorithm described before is to know for each operator if it is bijective on some of its arguments.
This extension allows to deal with arithmetic masking and not only with Boolean masking.
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Finally, note that so far we did not implement a methodology allowing to check implementations
with both boolean and arithmetic masking (in particular conversions between both systems).
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