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1.1. Introduction

The security of cryptographic implementations can be assessed following two dif-
ferent methods. On the one hand, cryptographic implementations can be confronted
with concrete side-channel attacks directly on embedded devices (as presented in pre-
vious chapters). While their security would thus be directly evaluated on the target
device by exploiting the actual leakage that the attacker will have access to, this ap-
proach remains empirical, not portable and does not yield measurable security levels
(e.g., attacks might be missing). On the other hand, the security of cryptographic im-
plementations can be formally proven based on abstract leakage models which aim to
define the attacker’s capabilities. This second approach advantageously makes it pos-
sible to measure concrete security levels. Although the leakage models may be too far
removed from reality to yield practical security, the community works on improving
them with respect to concrete devices in order to connect both sides. In this chapter, we
will investigate the different leakage models and the related masking security proofs.

Several leakage models have been introduced to reason on the security of masked
cryptographic implementations against side-channel attacks. In this chapter, we se-
lected four of them that we believe are the most widely used. The noisy leakage model
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is often considered to be the closest to the reality of embedded devices by assuming
that the adversary gets a noisy function of each manipulated data. Given the difficulty
of building security proofs in this model, most masking schemes are proven to be se-
cure in the probing model, yet further from reality. Several leakage models stand in the
middle. Among them, the robust probing model supplements the probing model by ad-
ditionally considering the leakage of physical defaults and the random probing model
is closer to the noisy leakage model (with a tight reduction) and makes it possible to
build security proofs.

The next section introduces all the prerequisites that we need on circuits, sharings,
gadgets, and compilers to accurately explain the security proofs in the subsequent
parts. Section 1.3 intuitively and formally introduces the probing model. Its extension,
the robust probing model, is discussed in Section 1.4. The more realistic noisy leakage
and random probing models are then defined in Section 1.5. Finally, the last section is
dedicated to the composition of secure gadgets in these models.

1.2. Preliminaries

In this chapter, K shall denote a finite field and Fq the finite field with q elements.
Any two probability distributions D1 and D2 are said ε-close, denoted D1 ≈ε D2, if
their statistical distance is upper bounded by ε, that is

SD(D1;D2) :=
1

2

∑
x

|pD1
(x)− pD2

(x)| ≤ ε,

where pD1(·) and pD2(·) denote the probability mass functions of D1 and D2.

1.2.1. Circuits

An arithmetic circuit over K is a labeled directed acyclic graph whose edges are
wires and vertices are arithmetic gates processing operations over K. A randomized
arithmetic circuit is additionally equipped with random gates of fan-in (i.e., number of
inputs) 0 and fan-out (i.e., number of outputs) 1 which output a fresh uniform random
value in K. A (randomized) arithmetic circuit is further formally composed of input
gates of fan-in 0 and fan-out 1 and output gates of fan-in 1 and fan-out 0. During the
evaluation of a ℓ-input circuit on an input x ∈ Kℓ, each wire is assigned with a value
in K. We denote AssignWires the probabilistic algorithm that given a randomized
arithmetic circuit C, an input x ∈ Kℓ, and a subsetW of wire labels outputs a set of
|W| values corresponding the assignments of the wires of C with label in W for an
evaluation on input x.
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1.2.2. Additive Sharings and Gadgets

In this chapter, the n-additive decoding mapping, denoted AddDec, refers to the
function

⋃
n Kn → K defined as

AddDec : (x1, . . . , xn) 7→ x1 + · · ·+ xn ,

for every n ∈ N and (x1, . . . , xn) ∈ Kn. We shall further consider that, for every
n, ℓ ∈ N, on input (x̂1, . . . , x̂ℓ) ∈ (Kn)ℓ the n-additive decoding mapping acts as

AddDec : (x̂1, . . . , x̂ℓ) 7→ (AddDec(x̂1), . . . ,AddDec(x̂ℓ)) .

For some tuple x̂ = (x1, . . . , xn) ∈ Kn and for some set I ⊆ [1;n], the tuple
(xi)i∈I is denoted x̂|I .

DEFINITION 1.1.– [Additive Sharing] Let n, ℓ ∈ N. For any x ∈ K, an n-additive
sharing of x is a random vector x̂ ∈ Kn such that AddDec(x̂) = x. It is said to be
uniform if for any set I ⊆ [1;n] with |I| < n the tuple x̂|I is uniformly distributed
over K|I|. An n-additive encoding is a probabilistic algorithm AddEnc which on input
a tuple x = (x1, . . . , xℓ) ∈ Kℓ outputs a tuple x̂ = (x̂1, . . . , x̂ℓ) ∈ (Kn)ℓ such that
x̂i is a uniform n-sharing of xi for every i ∈ [ℓ].

We shall call an (n-share, ℓ-to-m) gadget, a randomized arithmetic circuit that
maps an input x̂ ∈ (Kn)ℓ to an output ŷ ∈ (Kn)m such that x = AddDec(x̂) ∈ Kℓ

and y = AddDec(ŷ) ∈ Km satisfy y = g(x) for some function g.

For an (n-share, ℓ-to-m) gadget, if we denote by I a collection of sets I =
(I1, . . . , Iℓ) with I1 ⊆ [1;n], . . . , Iℓ ⊆ [1;n] where n ∈ N refers to the number
of shares, for some x̂ = (x̂1, . . . , x̂ℓ) ∈ (Kn)ℓ, we denote x̂|I = (x̂1|I1 , . . . , x̂ℓ|Iℓ)
where x̂i|Ii ∈ K|Ii| is the tuple composed of the coordinates of the sharing x̂i of
indexes included in Ii.

1.2.3. Compilers

DEFINITION 1.2.– [Circuit Compiler] A circuit compiler is a triplet of algorithms
(CC,Enc,Dec) defined as follows:

– CC (circuit compilation) is a deterministic algorithm that takes as input an arith-
metic circuit C and outputs a randomized arithmetic circuit Ĉ.

– Enc (input encoding) is a probabilistic algorithm that maps an input x ∈ Kℓ to
an encoded input x̂ ∈ Kℓ′ .

– Dec (output decoding) is a deterministic algorithm that maps an encoded output
ŷ ∈ Km′

to a plain output y ∈ Km.
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These three algorithms satisfy the following properties:
– Correctness: For every arithmetic circuit C of input length ℓ, and for every

x ∈ Kℓ, we have

Pr
(
Dec

(
Ĉ(x̂)

)
= C(x)

∣∣ x̂← Enc(x)
)
= 1 , where Ĉ = CC(C).

– Efficiency: For some security parameter λ ∈ N, the running time of CC(C)
is poly(λ, |C|), the running time of Enc(x) is poly(λ, |x|) and the running time of
Dec

(
ŷ
)

is poly(λ, |ŷ|), where poly(λ, q) = O(λk1qk2) for some constants k1, k2.

A standard circuit compiler with sharing order n and arithmetic base gadgets is a
compiler (CC,Enc,Dec) which additionally satisfies the following properties:

– the input encoding Enc is an n-additive encoding
– the output encoding Dec is the n-additive decoding mapping AddDec

– the circuit compilation CC consists in replacing each gate in the original circuit
by an n-share gadget with corresponding functionality, and each wire by a set of n
wires carrying an n-additive sharing of the original wire. If the input circuit is a ran-
domized arithmetic circuit, each of its random gates is replaced by n random gates,
which duly produce an n-additive sharing of a random value.

For standard circuit compilers, the correctness and efficiency directly hold from the
correctness and efficiency of its gadgets.

1.3. Probing Model

The probing model is one of the most broadly used leakage models. Informally,
the t-probing model states that during the evaluation of a circuit C, at most t wires
(chosen by the adversary) leak the value they carry. The circuit C is thus claimed to
be t-probing secure if the exact values of any set of t intermediate variables, that are
referred to as observations or probes, do not reveal any information about its inputs. As
in reality, the leakage traces somehow reveal noisy functions of the manipulated data,
this model is motivated by the difficulty of learning information from the combination
of t variables from their noisy functions in masking schemes (as t grows).

1.3.1. Formal Definition

We first recall the formal definition of the t-probing security. Intuitively, if a sim-
ulator can perfectly simulate any set of t probes without any knowledge of the secret
inputs, then an attacker won’t learn any sensitive information from any set of t probes.

DEFINITION 1.3.– [t-Probing Security] A randomized arithmetic circuit Ĉ equipped
with an encoding Enc is t-probing secure if there exists a simulator Sim which, for
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any input x ∈ Kℓ, for every set of wiresW such that |W| ≤ t, satisfies

Sim(Ĉ,W) = AssignWires(Ĉ,W, Enc(x)).

EXAMPLE.– Let us take a toy example to illustrate this notion. Consider a randomized
arithmetic circuit Ĉ which implements a second-order multiplication (as given in Al-
gorithm 1). Basically, from the shared input x̂ = (â, b̂) = ((a0, a1, a2), (b0, b1, b2)) ∈
F6
2, it computes a shared output ĉ = (c0, c1, c2) ∈ F3

2 as follows:

c0 ← a0 · b0 + r0,1 + r0,2
c1 ← a1 · b1 + (r0,1 + a0 · b1 + a1 · b0) + r1,2
c2 ← a2 · b2 + (r0,2 + a0 · b2 + a2 · b0) + (r1,2 + a1 · b2 + a2 · b1)

such that c = c0+ c1+ c2 = a · b = (a0+a1+a2) · (b0+ b1+ b2). From the probing
security definition, Ĉ is 2-probing secure if and only if any pair of leaking wires can
be perfectly simulated without the knowledge of inputs a or b. Ignoring the copy gates
to replicate variables that are to be used more than once, Algorithm 1 manipulates
27 intermediate variables, therefore the dependency of

(
27
2

)
= 351 pairs of potential

leaking wires with the secrets a and b must be determined to conclude.

Algorithm 1 Second-order multiplication

Require: (a0, a1, a2) and
(b0, b1, b2)

Ensure: (c0, c1, c2)
1: c0 ← a0 · b0
2: c0 ← c0 + r0,1
3: c0 ← c0 + r0,2
4: t← a0 · b1
5: u← a1 · b0

6: v ← r0,1 + t
7: v ← v + u
8: c1 ← a1 · b1
9: c1 ← c1 + v

10: c1 ← c1 + r1,2
11: t← a0 · b2
12: u← a2 · b0
13: v ← r0,2 + t

14: v ← v + u
15: c2 ← a2 · b2
16: c2 ← c2 + v
17: t← a1 · b2
18: u← a2 · b1
19: v ← r1,2 + t
20: v ← v + u
21: c2 ← c2 + v

1.3.2. Proofs for Small Gadgets

This section describes two widely deployed methods to prove the t-probing secu-
rity of a circuit, namely computing the distributions and simulating the values carried
by leaking wires with input shares.

1.3.2.1. Distribution-based Proofs

Determining whether the values carried by t leaking wires are jointly independent
from a secret in Kℓ can be done exactly by computing the distributions. Namely, given
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a setW of t leaking wires and a Kℓ-valued random variable X , we must check if the
following equality is satisfied:

∀ w ∈ Kt, ∀ x ∈ Kℓ, Pr[AssignWires(Ĉ,W,Enc(X )) = w]

= Pr[AssignWires(Ĉ,W,Enc(X )) = w|X = x].

This can be done by computing the realizations ofW and X for all the possible inputs
(including all the possible random values involved). Such a method quickly becomes
very expensive. Then, it remains to extend the verification to all the possible wire sets
W whose number is exponential in t and in the total number of wires.

EXAMPLE.– Let us take the example of the randomized arithmetic circuit implement-
ing the second-order multiplication of Algorithm 1. Taking W as the wires carrying
variable c0 as defined at Step 2 (i.e., a0 · b0+ r0,1) and variable u as defined at Step 12
(i.e., a2 · b0), the idea is to compute the values taken byW and X for all the possible
values of the variables involved: a, b, a0, a2, b0 and r0,1. We get (e.g., using a truth
table) that, for all α ∈ F2,

Pr[AssignWires(Ĉ,W,Enc(X )) = (α, 0)] = 3/8

Pr[AssignWires(Ĉ,W,Enc(X )) = (α, 1)] = 1/8

and

∀ x ∈ F2
2, Pr[AssignWires(Ĉ,W,Enc(X )) = (α, 0),X = x] = 3/32

∀ x ∈ F2
2, Pr[AssignWires(Ĉ,W,Enc(X )) = (α, 1),X = x] = 1/32.

The desired equality directly follows using the Bayes formula. The same computation
is then to be performed for the 350 remaining pairs.

1.3.3. Simulation-based Proofs

A second method to circumvent the heavy computation of distributions relies on
simulation-based properties to demonstrate the independence of the leaking wires
from the input secrets. Informally, the idea is to perfectly simulate each possible set
of leaking wires with the smallest set of input shares. If the latter is independent from
the secret, then so is the set of leaking wires. If any set of t leaking wires can be
perfectly simulated with at most t shares of each input, then the circuit is said to be
t-non-interferent (or t-NI) and if the input sharing is uniform, it directly implies the
t-probing security. The formal definition is recalled hereafter.

DEFINITION 1.4.– [t-Non-Interference] A randomized arithmetic circuit Ĉ equipped
with an encoding Enc is t-non-interferent (or t-NI) if there exists a deterministic sim-
ulator Sim1 and a probabilistic simulator Sim2, such that, for any input x ∈ Kℓ, for
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every set of leaking wiresW of size t,

(I1, I2, . . . , Iℓ)← Sim1(Ĉ,W) with |I1|, |I2|, . . . , |Iℓ| ≤ t

and Sim2(I1, I2, . . . , Iℓ) = AssignWires(Ĉ,W,Enc(x)).

Two different types of security proofs can be envisioned to demonstrate that a
circuit is t-NI that we refer to as exhaustive proofs and generic proofs.

Exhaustive simulation-based proofs simply enumerate all the possible sets of t
leaking wires in the circuit and check for each of them that the minimal number of
input shares that are needed for a perfect simulation is at most equal to t.

EXAMPLE.– The setW of two leaking wires carrying the variables a0 · b0 + r0,1 and
a2 · b0 of our second-order multiplication circuit can be perfectly simulated from the
set of input shares (a2, b0). Indeed, the second variable is perfectly simulated from
the two input shares and the first variable can be generated uniformly as random as its
distribution is independent from any input share with the addition of the random value
r0,1 which is used nowhere else inW .

Such exhaustive simulation-based proofs are implemented in automatic verification
tools that take the description of a randomized arithmetic circuit as input and produce
either a security proof in the probing model or output a potential attack path. Some of
these tools determine the smallest set of input shares required for the simulation from
various methods that are more or less efficient and complete.

Generic NI-based proofs aim to demonstrate the t-non-interference of a circuit
masked with n shares (e.g., n = t+1 shares), without instantiating n and t. The main
idea is to prove that whatever the set of t < n leaking wires, they can be simulated
with at most t shares of each input.

EXAMPLE.– Consider a very simple sharewise addition gadget masked with n shares
such that for any input sharings â ∈ Kn and b̂ ∈ Kn, the output sharing ĉ is defined
as follows:

ci ← ai + bi, ∀i ∈ [1;n].

Now let W be a set of probes such that |W| ≤ t < n. In our example, probes can
take the form of a share of â, a share of b̂, or a share of ĉ. We need to demonstrate that
these probes can be perfectly simulated using at most t shares of â and t shares of b̂.
To do so, we define two sets I and J that are initially empty and that will represent
the indices of the needed shares of â and b̂ respectively. Namely, for each probe p in
W , we suggest to fill them as follows:



8 Masking Security Proofs

– we add the index i to I if p corresponds to ai,
– we add the index i to J if p corresponds to bi,
– we add the index i to I and the index i to J if p corresponds to ci.

Doing so, we have covered all the possible probes and we can notice that |I| and |J |
are both upper bounded by |W| (since each probe adds at most one index to each set).
Now, it remains to show that the shares of â whose indices are in I and the shares of
b̂ whose indices are in J are enough to perfectly simulate all the probes inW:

– for any probe p such that p = ai, i is in I and so p can be perfectly simulated
from ai,

– for any probe p such that p = bi, i is in J and so p can be perfectly simulated
from bi,

– for any probe p such that p = ci, i is in I ∩J and so p can be perfectly simulated
from ai and bi.

We have thus demonstrated that any set W of at most t probes (with t < n) can
be perfectly simulated from at most |W| shares of each input, hence the considered
gadget is t-NI. While this example remains very simple, a very detailed example of
such a proof of t non-interference for a more complex gadget is provided in Appendix
C of Barthe et al.’s paper from CCS 2016.

1.3.4. Limitations

The probing model is quite convenient for security proofs as it manipulates the
exact values carried by the leaking wires. Nevertheless, it fails in precisely reflecting
the reality of embedded devices in at least two main aspects.

On the one hand, it does not natively consider physical defaults, like glitches or
couplings which can yield leakage on secret values with less observations than ex-
pected from the probing security order.

EXAMPLE.– In order to illustrate the limitations of the probing model with respect
to some physical effects, we take a simple example. On many micro-controllers, we
observe that the power consumption could strongly depend on the number of bits
that are actually modified when adding a new variable in a register. In the example
of Algorithm 1, if output variables correspond to registers, then we can see that a0 ·
b2 (line 11) and a1 · b2 (line 17) are successively stored in the same register. These
successive operations are likely to leak at once the Hamming Distance (i.e, the number
of ones in the binary expression of the exclusive or) between a0 ·b2 and a1 ·b2. A single
observation might reveal information on two shares of input a, and the corresponding
gadget made of n-share variables would not be (n− 1)-NI.
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On the other hand, the probing model fails to capture the powerful horizontal at-
tacks, i.e. it typically ignores the repeated manipulation of identical sensitive interme-
diate variables which would average the noise and hence remove uncertainty on secret
variables. In practice, if we reasonably assume that each variable concretely leaks a
deterministic function of its value plus an independent Gaussian noise with a constant
standard deviation, then observing α occurrences of this variable will yield a reduction
of the noise by a factor

√
α. In the probing model, such repetitions have no effect on

the targeted security order.

1.4. Robust Probing Model

In the t-probing model, t circuit wires are supposed to leak, independently from
each other. However, in practice, physical defaults might generate a leakage of values
carried by several wires at once. In that case, the lowest secret-dependent statistical
moment of the leakage distribution could be lower that t. The most typical examples
of physical defaults include transitions and glitches, and probes can be extended ac-
cordingly. For instance, in presence of glitches, probes (or equivalently observations)
might reveal all the variables carried by coming wires up to the last synchronization
point. Such probes thus include not only one, but a set of wires. Similarly, pairs of
values that are successively stored in the same memory cell may leak at once (when
the second variable replaces the first one), therefore in presence of transition-based
leakage, probes are generally assumed to include specific pairs of wires.

Informally, a circuit is t-robust probing secure if any set of t so-called extended
probes is independent from its inputs. The main idea remains similar to that of the
probing model with the difficulty of combining several noisy values but the model is
now refined by extending the probes that are likely to reveal more information than
one single variable at once, following the practical observations on embedded devices.

1.4.1. Formal Definition

The formal definition of the t-robust probing model directly follows that of the
probing model in which wires are replaced by extended probes. The latter may be re-
duced to sets of wires which simultaneously leak the values they carry. The definition
of these sets completely depends on the physical defaults that are captured and on the
architecture of the circuit.

DEFINITION 1.5.– [t-Robust Probing Security] A randomized arithmetic circuit Ĉ
equipped with an encoding Enc is t-robust probing secure if there exists a simulator
Sim which, for any input x ∈ Kℓ, for every set of extended probes P such that |P| ≤ t
and pointing to the set of wiresW , satisfies

Sim(Ĉ,W) = AssignWires(Ĉ,W, Enc(x)).
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In this definition, a single extended probe in P potentially represents several wires in
W . That is why |P| ≤ t butW can be larger in size than t.

EXAMPLE.– Let us consider a randomized arithmetic circuit implementing Algo-
rithm 1 such that the three first steps are executed before the variable c0 is stored in a
register. In presence of glitches, an extended probe on c0 after these three steps (i.e.,
P = {c0}) could leak all the variables of coming wires up to the last synchronization
point at once, namely a0, b0, r0,1 and r0,2 (i.e.,W = {a0, b0, r0,1, r0,2}). Four wires
could thus be targeted at the cost of a single probe.

Similarly, in case variable u at Step 5 and variable u at Step 12 are stored in the same
memory cell consecutively, then a single probe at Step 12 might reveal information on
the two variables a1 ·b0 and a2 ·b0 (corresponding to two different wires). In this case,
two shares of a would be partly revealed at the cost of a single observation, which
would reduce the robust security order to at most 1.

1.4.2. Proofs for Small Gadgets

As in the probing model, the security of small gadgets in the robust probing
model can be demonstrated through distribution-based proofs or (exhaustive or
generic) simulation-based proofs. The former behave the same as in the probing
model but the leaking wire set W can be of size larger than t with extended probes.
Exhaustive simulation-based proofs enumerate all the possible sets of leaking wires
corresponding to t extended probes (i.e., sets of leaking wires which are at least of
size t) in the circuit and check for each of them that the minimal number of input
shares that are needed for a perfect simulation is at most equal to t. Proving that a
larger set only depends on t input shares may be more complex but the number of
possible sets is very likely to be reduced.

EXAMPLE.– Let us get back to the example of the second-order multiplication. We
re-write it on Algorithm 2 with a careful usage of registers. Namely, the notation
"[v]" means that at this step, the output variable of the expression v is stored in a
register. We then assume that each intermediate variable leaks all its inputs from their
last storage in registers. For instance, the output c1 (at Step 10) would leak a1, b1,
r1,2 and v = ((r0,1 + a0 · b1) + a1 · b0), making it useless for an attacker to target
these variables individually. The leaking sets are then larger but their number is much
smaller:

(
9
2

)
= 36 compared to

(
27
2

)
= 351 in the probing model.
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Algorithm 2 Second-order multiplication with careful storage in registers

Require: (a0, a1, a2) and
(b0, b1, b2)

Ensure: (c0, c1, c2)
1: c0 ← a0 · b0
2: c0 ← c0 + r0,1
3: c0 ← c0 + r0,2
4: t← a0 · b1
5: u← a1 · b0

6: v ← [r0,1 + t]
7: v ← [v + u]
8: c1 ← a1 · b1
9: c1 ← c1 + v

10: c1 ← c1 + r1,2
11: t← a0 · b2
12: u← a2 · b0
13: v ← [r0,2 + t]

14: v ← [v + u]
15: c2 ← a2 · b2
16: c2 ← c2 + v
17: t← a1 · b2
18: u← a2 · b1
19: v ← [r1,2 + t]
20: v ← [v + u]
21: c2 ← c2 + v

Eventually, generic simulation-based proofs are also a bit different. Unlike in the
probing model, where t input shares can be used to simulate t leaking wires, we now
need t input shares to potentially simulate significantly more.

EXAMPLE.– Getting back to our example of the n-share sharewise addition gadget,
each probe p on an output share ci (for 1 ≤ i ≤ n) would leak information on ci =
ai + bi, ai and bi (instead of only ci). However, the gadget remains t-NI (for t < n)
in the robust probing model since each (extended) probe can still be simulated using
at most one share of each input. In our example, when p = ci (for some 1 ≤ i ≤ n),
all the corresponding leaking wires ci = ai + bi, ai and bi can be simulated from one
share of â (i.e., ai) and one share of b̂ (i.e., bi).

1.4.3. Limitations

While the robust probing model nicely supplements the probing model by handling
physical defaults, it suffers from the same limitations regarding horizontal attacks. In-
deed, the robust probing model is similarly based on a fixed number of probes regard-
less of their number of occurrences (i.e., usages).

1.5. Random Probing Model & Noisy Leakage Model

The noisy leakage model can be seen as a specialization of the only computation
leaks model. Informally, a circuit is secure in the noisy leakage model if the adver-
sary cannot recover non-negligible information on the secrets from a noisy function
of each intermediate variable of the implementation. Such a noisy function f is said
to be δ-noisy if it satisfies β(X , f(X )) def

= ∆(X ; (X|f(X ))) ≤ δ where ∆ denotes
the statistical distance between the laws of X and (X|f(X )) over the random distri-
bution of f(X ) and for a uniform random variable X . We stress that any power or
electromagnetic leakage can be captured by this model.
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1.5.1. Formal Definition of the Noisy Leakage Model

In the noisy leakage model, each wire is assumed to leak a noisy function of the
value it carries. Let δ be the corresponding noise parameter. The formal definition
follows. Informally, a circuit is secure against noisy leakage if the noisy leakage of
each of its wires is not enough to recover non-negligible information on the input
secrets.

DEFINITION 1.6.– [Security against δ-Noisy Leakage] Let X be a uniform random
variable over Kℓ. A randomized arithmetic circuit C with ℓ · n ∈ N input gates and
made of a setW of wires is ε-secure against δ-noisy leakage with respect to encoding
Enc if:

β(X|f1(W1), . . . , f|W|(W|W|)) ≤ ε

where

W1, . . . ,W|W| ← AssignWires(C,W,Enc(X ))

for any δ-noisy functions f1, . . . , f|W|.

Note that the statistical distance can be based on the L2 (Euclideans) norm, on the
L1 norm, or even on the relative error.

1.5.2. Limitations

The security proofs remain far from convenient and masking schemes continue to
be verified in the probing model.

1.5.3. Reduction to the Probing Model

The noisy leakage security can be reduced to the probing security. This reduction
relies on an intermediate leakage model, called random probing model. Informally
in the random probing model, each intermediate variable leaks with some constant
leakage probability p. A circuit is secure if there is a negligible probability that these
leaking wires actually reveal information about the secrets. The random probing model
further encompasses the powerful horizontal attacks which exploit the repeated ma-
nipulations of variables in an implementation and also benefits from a tight reduction
with the noisy leakage model which becomes independent of the size of the circuit.

The reduction of the noisy leakage security to the probing security first relies on
the fact that, by applying the Chernoff bound, a t-probing secure computation is also
p-random probing secure with p = t/s where s denotes the number of gates in the
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original circuit. The reduction is not tight in this respect (considering a constant num-
ber of probes) since the security level decreases as the size of the circuit increases.
The second transition and key lemma of the reduction proves that p-random prob-
ing security implies δ-noisy leakage security with δ = p/|K| where |K| denotes the
cardinal of the base field K. This is because any δ-noisy function f can be written as
f(·) = g◦ϕ(·) where g is a randomized function and ϕ is a p-random probing function
(i.e. ϕ(x) = x with probability p and ϕ(x) = ⊥ otherwise) with p = δ · |K|.

REMARQUE. Note that the definition of the noisy leakage model can be modified
using other metrics than the statistical distance in order to tighten the reduction. For
instance, using the average relative error (ARE) from pointwise mutual information
would eliminate the multiplicative factor |K|. This is because the statistical distance
is a average case metric while the random probing is a worst case measurement of
the leakage.

1.5.4. Formal Definition of the Random Probing Model

Let p ∈ [0, 1] be some constant leakage probability parameter. This parameter
is sometimes called leakage rate in the literature. Informally, the p-random probing
model states that, during the evaluation of a circuit C, each wire leaks its value with
probability p (and leaks nothing otherwise), where all the wire leakage events are
mutually independent.

In order to formally define the random-probing leakage of a circuit, we shall de-
fine an additional leaking-wires sampler. This probabilistic algorithm takes as input
a randomized arithmetic circuit C and a probability p ∈ [0, 1], and outputs a set W ,
denoted as

W ← LeakingWires(C, p) ,

whereW is constructed by including each wire label from the circuit C with proba-
bility p toW (where all the probabilities are mutually independent).

DEFINITION 1.7.– [(p, ϵ)-Random Probing Security] A randomized arithmetic circuit
C with ℓ · n ∈ N input gates is (p, ϵ)-random probing secure with respect to encoding
Enc if there exists a simulator Sim such that for every x ∈ Kℓ:

Sim(C) ≈ε AssignWires(C, LeakingWires(C, p),Enc(x)) .

We can further consider a simulation with abort. In this approach, the simulator
first calls the leaking-wires sampler to get a setW and then either aborts (or fails) with
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probability ε or outputs the exact distribution of the wire assignment corresponding to
W . Formally, for any leakage probability p ∈ [0, 1], the simulator Sim is defined as

Sim(C) = SimAW(C, LeakingWires(C, p))

where SimAW, the wire assignment simulator, either returns ⊥ (simulation failure,
with probability ε) or a perfect simulation of the requested wires. It is not hard to see
that if we can construct such a simulator SimAW for a compiled circuit Ĉ, then this
circuit is (p, ε)-random probing secure.

1.5.5. Proofs in the Random Probing Model

In this section, we show how to compute the simulation failure probability ε as a
function f(p) of the leakage probability p.

We consider a compiled circuit Ĉ composed of s wires labeled from 1 to s. The
simulation failure probability ε can then be explicitly expressed as a function of p.
Namely, we have ε = f(p) with f defined for every p ∈ [0, 1] by:

f(p) =

s∑
i=1

ci · pi · (1− p)s−i

with ci the number of subsetsW ⊆ [s] of cardinality i for which the simulation fails.
For any circuit Ĉ achieving t-probing security, the values ci with i ≤ t are equal to
zero, which implies the following simplification:

f(p) =

s∑
i=t+1

ci · pi · (1− p)s−i. [1.1]

EXAMPLE.– [Evaluating f(p) for the second-order multiplication gadget] Getting
back to our second-order multiplication gadget from Algorithm 1, we can compute
the failure function (e.g. using automatic tools) and display its first coefficients:

f : p 7→ 1 297 · p3 +O(p4).

Notice that the three first coefficients are zero, which confirms the second-order prob-
ing security of this gadget. Then, 1 297 triplets of intermediate variables are leaking
information on the secret inputs (on 2 925 triplets in total). Given the level of noise of
a chosen underlying platform, the probability p can be defined to evaluate the random
probing security parameter ε = f(p) of this gadget.
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1.5.6. Extension to Handle Physical Defaults

In a first attempt, the random probing model assumes that all the wires in a cir-
cuit are leaking independently with the same probability p. In practice, in presence of
physical defaults, this assumption may be too strong. First, different wires may leak
with different probabilities (i.e., different signal-to-noise ratios). Second, dependen-
cies might occur between the leakage of different wires.

In the first scenario, more accurate probabilities can be computed from the signal-
to-noise ratios. From independent probabilities for each wire, it is easy (but much less
efficient) to compute the failure function f . Unlike the formula from Equation 1.1,
sets of wires cannot be jointly evaluated based on their size as they would not share
the same probability to leak anymore. The probability that a tuple (x1, x2, . . . , xα) of
at least α wires jointly leaks is then :

px1
· px2

· · · · · pxα
.

The probability that a tuple (x1, x2, . . . , xα) of only α wires among β > α wires leaks
is then :

px1
· px2

· · · · · pxα
· (1− pxα+1

) · (1− pxα+2
) · · · · · (1− pxβ

).

If all the probabilities are different, then all the tuples must be individually considered
in the computation of the failure function.

The presence of physical defaults like glitches breaks the independence between
the leaking probabilities of different variables. In particular, wires that carry variables
in the same computation between two synchronization points are likely to leak simul-
taneously. The computation of the failure function then depends on the dependencies
between the leaking wires.

1.6. Composition

As explained in the previous sections, exhaustive or generic proofs can be built to
demonstrate the security of small gadgets implementing atomic operations (e.g., addi-
tions, multiplications). One step further, building security proofs for complex circuits
was shown to be either error-prone for hand-made proofs or computationally impossi-
ble with automatic verification tools. Hence the need to split big circuits into smaller
blocks that can be proven secure and then safely combine them with well-defined
composition rules (see Figure 1.1 for an illustration).

In the following, we will recall the main composition rules for the aforementioned
models and explain how to use them to safely compose small secure gadgets.
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Algorithminputs outputs

Gadget decomposition

inputs outputs

Figure 1.1. Illustration of (de)-composition

1.6.1. Composition in the Probing Model

Two main composition techniques to achieve global probing security are described
hereafter.

1.6.1.1. Doubling the Number of Shares
A simple method to build secure masked schemes for Boolean circuits is based on

the use of two specific gadgets and the doubling of the number of shares. Concretely,
any Boolean circuit can be decomposed into and and not gates only:

– each and gate can be replaced by the (n = 2t + 1)-share ISW multiplication
gadget,

– each not gate can be replaced by a (n = 2t + 1)-share gadget applying a not
gate to one single share only.

Then, it can be easily shown that any wire among these gadgets in a Boolean circuit
can be perfectly simulated from at most the same two shares i and j at input/output of
all the circuit’s gadgets. Therefore, any set of t probes can trivially be simulated from
at most 2 · t shares of all the manipulated data in the circuit and the whole Boolean
circuit is thus t-probing secure.

Although this method can be used to safely mask any Boolean circuit in the prob-
ing model, the doubling of the number of shares makes it quite expensive.

1.6.1.2. Non-Interference-Based Proofs
Relying on simulation-based properties, it is possible to achieve a tighter composi-

tion with gadgets with the optimal number of n = t+ 1 shares, at the cost of stronger
security properties. Indeed, directly composing any gadget of n = t + 1 shares does
not always yield t-probing security, due to the dependency between some gadgets’
inputs.

EXAMPLE.– See for instance the masking scheme that takes a (n = t+ 1)-sharing a
and that computes g2(a, g1(a)) using two t-NI gadgets g1 and g2 (see Definition 1.4),
illustrated below.
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g1

g2a

g1(a)

A t-probing adversary can observe t0 input shares of a, t1 intermediate variables on
g1 and t2 intermediate variables on g2 as soon as t0 + t1 + t2 ≤ t. From the t-NI
property of g2, all its t2 probes can be perfectly simulated from t2 shares of a and t2
output shares of g1. The t1 probes of g1 together with the t2 output shares required to
simulate g2’s probes can themselves be perfectly simulated from t1 + t2 input shares
of g1, i.e. shares of a. At the end, all the probes can be simulated from t0 + t1 +2 · t2
shares of a which can be higher than t. The proof therefore cannot be completed,
hence the need for stronger properties 1.

An example of a stronger property is the strong non-interference. It benefits from
stopping the propagation of the probes between the output and the input shares and
additionally trivially implies t-NI. Intuitively, a circuit is t-strong non-interferent (or
t-SNI) if and only if any set of at most t intermediate variables whose tint on internal
variables and tout on the output shares can be perfectly simulated with at most tint
shares of each input.

DEFINITION 1.8.– [t-Strong Non-Interference] A randomized arithmetic circuit Ĉ
equipped with an encoding Enc is t-strong non-interferent (or t-SNI) if there exists
a deterministic simulator Sim1 and a probabilistic simulator Sim2, such that, for any
input x ∈ Kℓ, for every sets of internal leaking wiresWi of size ti and output leaking
wiresWo of size to such that ti + to ≤ t,

(I1, I2, . . . , Iℓ)← Sim1(Ĉ,Wi,Wo) with |I1|, |I2|, . . . , |Iℓ| ≤ ti

and Sim2(I1, I2, . . . , Iℓ) = AssignWires(Ĉ,Wi ∪Wo,Enc(x)).

EXAMPLE.– Getting back to our example, let us assume now that g1 is t-SNI. A t-
probing adversary can still observe t0 input shares of a, t1 intermediate variables on
g1 and t2 intermediate variables on g2 (which is t-NI) as soon as t0 + t1 + t2 ≤ t.

g1

g2a

g1(a)

1. In practice, such a structure indeed yields concrete probing attacks for specific choices of gadgets g1
and g2.
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From the t-NI property of g2, all its t2 probes can be perfectly simulated from t2
shares of a and t2 output shares of g1. Then, the t1 probes of g1 together with the t2
output shares required to simulate g2’s probes can themselves be perfectly simulated
from only t1 input shares of g1 thanks to the t-SNI property (and because t1+ t2 ≤ t).
At the end, all the probes of the circuit can be simulated from t0 + t1 + t2 shares of
a which is always lower or equal to t, which is enough to conclude that the circuit is
t-NI, hence t-probing secure.

REMARQUE. Many other properties based on the non-interference notions can
be used to build tighter compositions with lower complexity and/or better security
levels. In particular, the Probe Isolating Non-Interference property (or PINI) reasons
on the dependency between a probe and the index of the share of input it can be
simulated from, rather than the number of probes and input shares.

In case a circuit misses gadgets with strong properties to achieve composition,
a common practice is to add so-called refresh gadgets. The latter are functionally
equivalent to the identity function but refresh the sharing with new random values
to break the dependencies between the old input sharing and the new one. Note that
inserting t-SNI refresh gadgets at careful locations is enough to make a randomized
arithmetic circuit made of t-NI secure gadgets globally t-probing secure.

1.6.1.3. Extension in the Glitch Robust Probing Model

Intuitively, the simulation strategy used in the probing model to securely compose
probing gadgets can directly be applied to the glitch robust probing model when there
are no glitches on the inputs. And it is actually proven to be also true in the latter sce-
nario. Namely, we can build a global simulator from glitch-robust probing simulators
on each individual gadget that take and produce extended probes.

1.6.2. Composition in the Random Probing Model

Probing-secure schemes are also secure in the random probing model, but the tol-
erated leakage probability might not be constant, which is not satisfactory from a prac-
tical viewpoint. Indeed, in practice, the side-channel noise may not be customizable
by the implementer.

In this section, we describe two methods to safely compose gadgets and build
schemes that are secure in the random probing model.

1.6.2.1. Simulation Based on the Number of Shares

The first method relies on the random probing composability notion for a gadget.
Informally and similarly to the non-interference property in the probing model, this
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notion relies on the capability for a gadget to tolerate a certain number of probes on its
output and a certain number of probes on its intermediate variables. All these probes
must additionally be (almost perfectly) simulated by a fixed set of input shares to
ensure the composition with prior gadgets.

DEFINITION 1.9.– [Random Probing Composability] Let n, ℓ,m ∈ N. An (n-share,
ℓ-to-m) gadget G : (Kn)ℓ → (Kn)m is (t, p, ε)-random probing composable (RPC)
for some t ∈ N and p, ε ∈ [0, 1] if there exists a deterministic algorithm SimG

1 and a
probabilistic algorithm SimG

2 such that for every input x̂ ∈ (Kn)ℓ and for every set
collection J1 ⊆ [1;n], . . . , Jm ⊆ [1;n] of cardinals |J1| ≤ t, . . . , |Jm| ≤ t, the
random experiment

W ← LeakingWires(G, p)

I ← SimG
1 (W,J)

out← SimG
2

(
x̂|I

)
yields

Pr
(
(|I1| > t) ∨ . . . ∨ (|Iℓ| > t)

)
≤ ε [1.2]

and

out
id
=

(
AssignWires(G,W, x̂) , ŷ|J

)
where J = (J1, . . . , Jm) and ŷ = G(x̂). Let f : R→ R. The gadget G is (t, f)-RPC
if it is (t, p, f(p))-RPC for every p ∈ [0, 1].

In the above definition, the first-pass simulator SimG
1 determines the necessary in-

put shares (through the returned collection of sets I) for the second-pass simulator
SimG

2 to produce a perfect simulation of the leaking wires defined by the set W to-
gether with the output shares defined by the collection of sets J . Note that there always
exists such a collection of sets I since I = ([1;n], . . . , [1;n]) trivially allows a perfect
simulation whateverW and J . However, the goal of SimG

1 is to return a collection of
sets I with cardinals at most t. The idea behind this constraint is to keep the follow-
ing composition invariant: for each gadget we can achieve a perfect simulation of the
leaking wires plus t shares of each output sharing from t shares of each input sharing.
We shall call failure event the event that at least one of the sets I1, . . . , Iℓ output of
SimG

1 has cardinality greater than t. When (t, p, ε)-RPC is achieved, the failure event
probability is upper bounded by ε according to [1.2]. A failure event occurs whenever
SimG

2 requires more than t shares of one input sharing to be able to produce a perfect
simulation of the leaking wires (i.e.the wires with label inW) together with the output
shares in ŷ|J . Whenever such a failure occurs, the composition invariant is broken. In
the absence of failure event, the RPC notion implies that a perfect simulation can be
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achieved for the full circuit composed of RPC gadgets. This is formally stated in the
next theorem.

THEOREM.– [Composition] Let t ∈ N, p, ε ∈ [0, 1], and CC be a standard circuit
compiler with (t, p, ε)-RPC base gadgets. For every (randomized) arithmetic circuit C
composed of |C| gadgets, the compiled circuit CC(C) is (p, |C| · ε)-random probing
secure.

1.6.2.2. Simulation Based on the Set of Shares

The first method relies on the number of leaking wires at the input and output of
each composable gadget. By preserving the same number of leaking wires at the input
and output, the security of each gadget can be easily considered separately and the
composition can be evaluated efficiently. Nevertheless, the security of the composition
can be tighter by further considering specific sets of leaking inputs and outputs rather
than their number.

This second method therefore relies on so-called (two-entry) probe distribution
tables (PDT). Informally, for some gadget G, its PDT provides, for a set of input
shares I and a set of output shares O, the probability that a simulator exactly needs
I to simulate the leaking wires in G (i.e., from LeakingWires(G, p)) and the output
shares O. Contrary to the first method which records the number of required input and
output shares, the PDT records the exact input and output sets of shares.

DEFINITION 1.10.– [Probe Distribution Table] Let p ∈ [0, 1] be some constant leak-
age probability parameter. Let G be an (n-share, ℓ-to-m) gadget with a set of input
wires I = (I1, . . . , Iℓ) and a set of output wires O = (O1, . . . , Om). The PDT of
G is a [0, 1]2

ℓ·n×2m·n
matrix such that PDTG[I′,O′] is the probability for I′ to be

the smaller set that is enough to simulate the leaking wires from LeakingWires(G, p)
together with O′.

EXAMPLE.– Let us take the very simple example of a (1-share, 2-to-1) gadget as an
xor gate, as represented in Figure 1.2.

a1

b1
c1

Figure 1.2. xor gate with a single share for each input

If we assume that each internal wire leaks with probability p, then its PDT table is
given by:
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O′ = ∅ O′ = {c1}
I′ = ∅ 1− p2 0
I′ = {{a1}} p · (1− p) 0
I′ = {{b1}} p · (1− p) 0
I′ = {{a1}, {b1}} p2 1

For instance, the probability for I′ = {{a1}} to be the smallest set that is enough to
simulate the leaking wires from LeakingWires(G, p) is computed from the probability
that exactly a1 is leaking (and not b1, otherwise we would need b1 as well), which is
p · (1 − p). Furthermore, if O′ is not empty, i.e. O′ = {c1}, then we need both input
shares to simulate it, i.e. I′ = {{a1}, {b1}}, hence the second column.

Note that PDTG[I′,O′] =
s∑

i=1

ci·pi·(1−p)s−i is similar to the failure function from

[1.1] but where ci denotes the number of leaking sets of size i that exactly requires the
input shares I′, to be simulated together with O′.

One step further, there is a direct relation between the probe distribution table and
the random probing security: a gadget G with a single input (whose sharing is indexed
by I) and a PDT PDTG is (p, PDTG[I, ∅])-random probing secure. The relation can be
extended to multiple-input gadgets by considering the sum

∑
I′
PDTG[I ′, ∅] for all I ′

that cover at least one input. A partial order can be defined on PDT so that for two
gadgets G1 and G2,

PDTG1 ≤ PDTG2

means that the amount of information leaked in G1 is less than or equal to the in-
formation leaked in G2. Using this partial order, composition of gadgets can be built
directly from their PDTs. We recall two main composition theorems to handle the two
scenarios of parallel composition and sequential composition (see Figure 1.3).

G1

G2

a

b

g1(a)

g2(b)

G1 G2a
g1(a)

Figure 1.3. Parallel (left) and sequential (right) composition of two gadgets

THEOREM.– [Parallel Composition] Let G1 and G2 be two gadgets and let PDTG1
and

PDTG2
be their respective probe distribution tables. The probe distribution table PDTG
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of gadget G = G1∥G2 can be computed as follows:

PDTG = PDTG1 ⊗ PDTG2

where ⊗ denotes the Kronecker product between matrices.

THEOREM.– [Sequential Composition] Let G1 be an (ℓ1-to-m) gadget and G2 be an
(m-to-ℓ2) gadget. Let PDTG1 and PDTG2 be their respective probe distribution tables.
The probe distribution table PDTG of gadget G = G2 ◦G1 is bounded as follows:

PDTG ≤ PDTG1 · PDTG2

where · denotes the standard matrix multiplication.

The global composition theorem is stated below.

THEOREM.– [Composition] Let p, ε ∈ [0, 1]. Let C be a (n-share, ℓ-input) randomized
arithmetic circuit of input sharings indexed by I made of gadgets G1, . . . , Gm. Then,
the PDT of C is upper bounded by a composition f of the PDTs of G1, . . . , Gm which
directly depends on the circuit’s structure:

PDTC ≤ f(PDTG1
, . . . , PDTGm

).

C is then (p,
∑
I′

PDTC [I′, ∅])-random probing secure for all the sets I′ that cover at

least one input of C. While this method yields tighter security parameters, it is also
more expensive to evaluate. Hybrid methods can be exhibited with different trade-offs
in terms of complexity and security evaluation.

1.7. Conclusion

This chapter has introduced several leakage models that are commonly used to
model the attacker’s observations on masking schemes during a side-channel attack.
Different methods have been discussed depending on these leakage models to prove
the security of the underlying masking schemes. Some of them apply directly to in-
dividual gadgets and can then be extended with composition techniques to prove the
security of larger circuits.

The next chapter will present verification techniques to automatically prove the
security of individual gadgets in the different leakage models, following the security
notions introduced in this chapter.




