
Computer-aided cryptography

Gilles Barthe
IMDEA Software Institute, Madrid, Spain

May 1, 2017

Ï S. Halevi: A plausible approach to computer-aided
cryptographic proofs

Ï M. Bellare and P. Rogaway: Code-Based Game-Playing Proofs
and the Security of Triple Encryption

Ï V. Shoup: Sequences of Games: A Tool for Taming
Complexity in Security Proofs

Computer-aided cryptography

Develop tool-assisted methodologies for helping the design,
analysis, and implementation of cryptographic constructions
(primitives and protocols)

Goals:
Ï Automated analysis of (symbolic or computational) security
Ï Independently verifiable proofs of (computational) security
Ï Verified implementations
Ï New designs and better implementations
Ï etc

Building on formal methods
Ï program analysis (safety)
Ï program verification (correctness)
Ï compilation (optimization)
Ï program synthesis
Ï etc

Potential benefits

Formal methods for cryptography
Ï higher assurance
Ï smaller gap between provable security and crypto engineering
Ï new proof techniques

Cryptography for formal methods
Ï Challenging and non-standard examples
Ï New theories and applications

A long-term goal

Ï FOR EVERY adversary that breaks assembly code,
Ï IF assembly code is safe and leakage resistent,
Ï AND assembly code correctly implements algorithm,
Ï THERE EXISTS an adversary that breaks the algorithm

Challenges:
Ï Models: execution, leakage, adversaries
Ï Practical: build efficient libraries
Ï Formal methods: theories and engineering

Current landscape

Ï Security in symbolic and computational model: ProVerif,
Tamarin, CryptoVerif, EasyCrypt, F*. . .

Ï Side-channel analysis: ct-grind, ct-verif, FlowTracker,
CacheAudit, Sleuth, maskcomp, maskverif

Ï Safety: TIS analyzer. . .
Ï Functional correctness: Cryptol, CompCert/VST, gf-verif. . .
Ï Cryptographic engineering: qhasm, boringssl, Charm. . .

Case study: MEE-CBC
Ï Black-box IND$-CPA security proof
Ï Equivalence w/ C implementation and specification
Ï Compile C using CompCert
Ï Apply certified constant-time verifier

Other examples: PKCS, HMAC, HACL*, miTLS

EasyCrypt

Domain-specific proof assistant
Ï proof goals tailored to reductionist proofs
Ï proof tools support common proof techniques (bridging steps,
failure events, hybrid arguments, eager sampling. . .)

Control and automation from state-of-art verification
Ï interactive proof engine and mathematical libraries
(a la Coq/ssreflect)

Ï back-end to SMT solvers and CAS

Game playing as (implicit) probabilistic couplings

Let µ1,µ2 ∈Dist(A) and R ⊆A×A. Let µ ∈Dist(A×A).
Ï µ is a coupling for (µ1,µ2) iff π1(µ)=µ1 and π2(µ)=µ2

Ï µ is a R-coupling for (µ1,µ2) if moreover Pry←µ[y 6∈R]= 0

Let µ is a R-coupling for (µ1,µ2).
Ï Bridging step: if R is equality, then for every event X ,

Prz←µ1 [X]= Prz←µ2 [X]

Ï Failure Event: If x R y iff F (x)⇒ x = y and F (x)⇔ F (y),
then for every event X ,∣∣Prz←µ1 [X]−Prz←µ2 [X]

∣∣≤max(Prz←µ1 [¬F],Prz←µ2 [¬F])

Ï Reduction: If x R y iff F (x)⇒G (y), then

Prx←µ2 [G]≤ Pry←µ1 [F]

Cryptographic proofs as probabilistic couplings
A useful insight?

Ï Prior (but limited) use of probabilistic couplings in crypto
Ï Key to build scalable verification infrastructure

No need to reason directly about probabilities
Make crypto proofs look “almost” like standard verification

Ï Helps generalizations (differential privacy, quantum crypto)

Code-based approach to probabilistic couplings

Ï Code-based approach

C ::= skip skip
| V ← E assignment
| V $←D random sampling
| C ; C sequence
| if E then C else C conditional
| while E do C while loop
| V ←P (E , . . . ,E) procedure (oracle/adv) call

Ï Game-playing technique: Í {P} c1 ∼ c2 {Q} where P and Q
are relations on states

Ï Concrete security: {Ψ}c{Pr[Φ]≤β} (many limitations)
Ï Bound execution time of constructed adversary
(limited tool support)

Some proof rules

Conditionals

Í {Φ∧b1∧b2} c1 ∼ c2 {Ψ} Í {Φ∧¬b1∧¬b2} c ′1 ∼ c ′2 {Ψ}

Í {Φ∧b1 = b2} if b1 then c1 else c ′1 ∼ if b2 then c2 else c ′2 {Ψ}

Random assignment

f ∈T 1−1−→T ∀v ∈T . µ1(v)=µ2(f v)

Í {∀v ,Q[v/x1, f v/x2]
}
x1 $←µ1 ∼ x2 $←µ2 {Q}

Ï Bijection f : specifies how to coordinate the samples
Ï Side condition: marginals are preserved under f

Status

Ï Broadly applicable: encryption, signatures, hash designs, key
exchange protocols, zero-knowledge protocols, garbled circuits,
SHA3, voting

Ï Helped unveiled subtle points in proofs
Ï Interactive tools remain time-consuming and difficult to use

A lightweight approach

Probabilistic experiments

Probabilistic inequalities

Proofs

Formalization brings significant benefits at each stage

Ï Abstraction and automation (problem specific)

Highly automated proofs

Many high-level principles are guess-and-check:
Ï Bridging steps: guess couplings, check equivalence
Ï Reduction steps: guess adversary, check equivalence

Automation:
Ï Proof-producing equivalence checker
Ï Heuristics for guessing

AutoG&P
Ï Automated proofs for DDH-based cryptography
Ï Cramer-Shoup, Boneh-Boyen, structure-preserving encryption

Challenge
Ï Build sufficiently rich set of high-level rules
Ï Decision procedures
(Jutla and Roy 2012, Carmer and Rosulek 2016)

Automated proofs in ROM

f ((m∥0)⊕G (r) ∥ r ⊕H((m∥0)⊕G (r)))

Ï Hard to get security proofs right
Ï 6 months to formalize the proof!
Ï Many variants in the literature
Ï About 200 variants of SAEP/OAEP (Komano and Ohta)
Ï About 106−108 candidates schemes of “reasonable” size
Ï Can we automate analysis for finding attacks or proofs?

ZooCrypt

Ï Extremely efficient logics for CPA and CCA security
(up-to-bad, optimistic sampling, reduction, reject some
ciphertexts)

Ï Extremely efficient procedures for detecting attacks
Ï Smart generation of candidate constructions

Experiments
Ï Generated 1,000,000 candidates
Ï For CPA security: 99,5% solved by the tool
Ï For CCA security: 80% solved by tool
Ï Practical interpretation (sql database)
Ï Manual inspection for grey zone
Ï Interactive tutor

ZAEP

Ï OAEP (1994):

f ((m∥0)⊕G (r) ∥ r ⊕H((m∥0)⊕G (r)))

Ï SAEP (2001):
f (r ∥ (m∥0)⊕G (r))

Ï ZAEP (2012):
f (r ||m⊕G (r))

+ redundancy-free
+ INDCCA secure for RSA with exponent 2 and 3

Automated proofs in GGM

Ï Introduced for proving lower bounds of DL algorithms
Ï Algorithms do not have direct access to algebraic values
Ï Used for validating hardness assumptions and efficient schemes
Ï Master theorem: symbolic security implies generic security
Ï Symbolic security by constraint solving (big operators)
Ï Applications: synthesis of SPS and ABE compiler

Timing attacks

Ï AES (Osvik, Shamir, Tromer 2006)
Ï MEE-CBC (AlFardan, Paterson 2013)
Ï RSA (Yarom, Falkner, 2014)
Ï . . .

Work remotely!

Cryptographic constant-time
Control flow and memory accesses should be independent of secrets

However, cryptographic constant-time is hard to program

Case study: MEE-CBC s2n implementation

Ï number of calls to compression function during decryption
must not depend on padding length or validity (Lucky 13)

Ï s2n performs some mitigation and adds random delay
Ï Insufficient in practice (Luckyµs). More mitigation
Ï Off-by-one error still causes large timing discrepancies, and
leads to plaintext recovery

ct-verif

Product program
Ï Two copies of program in lockstep
Ï Check agreement at critical instructions (branching/memory)

Inspired from Zaks and Pnueli (2008)

Ï Sound and relatively complete
Ï Supports private and public outputs
Ï Implementation for LLVM, based on Smack
Ï Extensively evaluated: NaCl, OpenSSL, FourQ, SUPERCOP
Ï Ongoing: vector instructions, counter-example generation

Differential power analysis

Ï Measure power consumption during execution
Ï Analysis of power can be used to recover secrets

Security models and masked implementations

Ï Threshold probing model: adversary can observe t-tuples of
intermediate values

Ï Noisy leakage model: all instructions leak. Leakage is noisy

Models are equivalent (Duc, Dziembowski, Faust 2014)

Value x encoded by t+1-tuple of prob. values (x0 . . .xt) s.t.
Ï x0, . . . ,xt are i.i.d. w.r.t. to uniform distribution
Ï x = x0+ ...+xt

Prior work

Ï Moss, Oswald, Page and Tunstall (2012)
Ï Bayrak, Regazzoni, Novo and Ienne (2013)
Ï Eldib, Wang and Schaumont (2014)

Limited to low orders, does not compose well

Probing security, formally

Program c is secure at order t iff
Ï every set of observations of size ≤ t can be simulated with at
most ≤ t shares from each input;

Ï every set of observations of size d ≤ t can be simulated with at
most ≤ d shares from each input

Ï given two equivalent inputs, the joint distributions for a set of
observations of size ≤ t are equal

Simplified case
Let f :A1×A2 →B . The following are equivalent:

Ï there exists g :A2 →B s.t. f (a1,a2)= g(a2) for every a1,a2

Ï f (a1,a2)= f (a′1,a2) for every a1,a′1,a2

MaskVerif

Ï Check probabilistic non-interference for large sets
Ï Works well in practice

Reference Target # tuples Security Complexity
sets time (s)

First-Order Masking
FSE13 full AES 17,206 4 3,342 128

MAC-SHA3 full Keccak-f 13,466 4 5,421 405
Second-Order Masking

RSA06 Sbox 1,188,111 4 4,104 1.649
1st -orderCHES10 Sbox 7,140 flaws (2) 866 0.045

CHES10 AES KS 23,041,866 4 771,263 340,745
FSE13 2 rnds AES 25,429,146 4 511,865 1,295
FSE13 4 rnds AES 109,571,806 4 2,317,593 40,169

Third-Order Masking
3rd -orderRSA06 Sbox 2,057,067,320 flaws (98,176) 2,013,070 695

FSE13 Sbox(4) 4,499,950 4 33,075 3.894
FSE13 Sbox(5) 4,499,950 4 39,613 5.036

Fourth-Order Masking
FSE13 Sbox (4) 2,277,036,685 4 3,343,587 879

Fifth-Order Masking
CHES10 ¯ 216,071,394 4 856,147 45

MaskComp

Ï Compositional security notion
Ï Fully automated type-based information flow analysis
(using abstract sets with cardinality constraints)

Ï Type-driven automated insertion of (SNI) refresh gadgets
Ï used to mask AES, Keccak, Simon, Speck at high orders
Ï generated code is reasonably fast, e.g. AES masked at order 7
is ∼ 100× slower than unmasked code

Composition

Constraint:
t0+ t1+ t2+ t3 É t

A0
t0

observations

A1
t1

observations
A2

t2
observations

A3
t3

observations

Strong non-interference
show that any set of t intermediate variables with

- t1 on internal variables
- t2 = t− t1 on the outputs

can be simulated with at most t1 shares of each input

2 internal
observations

+ 1 output
observation

a0 a1 a2 a3

c0 c1 c2 c3

Ï Several gadgets are strong non-interfering
Ï Extended MaskVerif to check SNI

Secure Composition

Constraint:
t0+t1+t2+t3+tr É t

A0
t0

observations

A1
t1

observations
A2

t2
observations

A3
t3

observations

tr
internal ob-
servations

Status

Ï Automated synthesis of refreshing gadgets
Ï Conversion between boolean and arithmetic masking

Ï Many simulation-based notions of security are equivalent to
information flow notions. Language-based techniques apply

Ï Active attacks (e.g. fault injections) is adversarial program
repair. Syntax-guided program synthesis applies

Summary

Foundations and tools for high-assurance cryptography
Ï Provable security
Ï Practical cryptography
Ï Reducing the gap between security proofs and implementations

Many exciting directions
Ï Automation (lattice-based crypto, etc)
Ï High-speed implementations (Jasmin)
Ï Language-based methods for information-theoretic security
Ï Synthesis (Hoang, Katz, Malozemoff 2015, Carmer, Rosulek
2016)

Ï Quantum cryptography

