
Parallel Implementations of Masking Schemes
and the Bounded Moment Leakage Model

G. Barthe, F. Dupressoir, S. Faust,
B. Grégoire, F.-X. Standaert, P.-Y. Strub

IMDEA (Spain), Univ. Surrey (UK), Univ. Bochum (Germany), INRIA Sophia-
Antipolis (France), UCL (Belgium), Ecole Polytechnique (France)

EUROCRYPT 2017, Paris, France

Outline

• Introduction / motivation
• Side-channel attacks and noise
• Masking and leakage models

• Bounded moment model
• Masking intuition & BMM definition
• Probing security ⇒ BM security

• Parallel multiplication (& refreshing)

• BM security ⇏ probing security
• Inner product masking (with “non-mixing” leakages)
• Continuous security & refreshing gadgets

• Conclusions

Outline

• Introduction / motivation
• Side-channel attacks and noise
• Masking and leakage models

• Bounded moment model
• Masking intuition & BMM definition
• Probing security ⇒ BM security

• Parallel multiplication (& refreshing)

• BM security ⇏ probing security
• Inner product masking (with “non-mixing” leakages)
• Continuous security & refreshing gadgets

• Conclusions

Side-channel attacks

• ≈ physical attacks that decreases security
exponentially in the # of measurements

1

𝟐𝟏𝟐𝟖

264

20

co
m

p
u

ta
ti

o
n

𝟏𝟐𝟖6432

of measurements

su
cc

es
s

p
ro

b
ab

ili
ty

96

Noise (hardware countermeasures) 2

Noise (hardware countermeasures) 2

Noise (hardware countermeasures)

• Additive noise ≈ cost × 2⇒ security × 2
⇒ not a good (crypto) security parameter

2

Outline

• Introduction / motivation
• Side-channel attacks and noise
• Masking and leakage models

• Bounded moment model
• Masking intuition & BMM definition
• Probing security ⇒ BM security

• Parallel multiplication (& refreshing)

• BM security ⇏ probing security
• Inner product masking (with “non-mixing” leakages)
• Continuous security & refreshing gadgets

• Conclusions

Masking (≈ noise amplification)

• Example: Boolean encoding

• With 𝑦1, 𝑦2, … , 𝑦𝑑−2, 𝑦𝑑−1 ← {0,1}
𝑛

3

𝑦 = 𝑦1⊕𝑦2⊕⋯⊕𝑦𝑑−1⊕𝑦𝑑

Masking (abstract view)

• Probing security (Ishai, Sahai, Wagner 2003)

4

𝑦 = 𝑦1⊕𝑦2⊕⋯⊕𝑦𝑑−1⊕𝑦𝑑

?

Masking (abstract view)

• Probing security (Ishai, Sahai, Wagner 2003)

• 𝑑 − 1 probes do not reveal anything on 𝑦

4

𝑦 = 𝑦1⊕𝑦2⊕⋯⊕𝑦𝑑−1⊕𝑦𝑑

?

Masking (abstract view)

• Probing security (Ishai, Sahai, Wagner 2003)

• But 𝑑 probes completely reveal 𝑦

4

𝑦 = 𝑦1⊕𝑦2⊕⋯⊕𝑦𝑑−1⊕𝑦𝑑

y

• Probing security (Ishai, Sahai, Wagner 2003)

• Bounded information leakage MI(𝑌𝑖; 𝐿)
𝑑

Masking (concrete view) 5

𝑦 = 𝑦1⊕𝑦2⊕⋯⊕𝑦𝑑−1⊕𝑦𝑑

?

• Probing security (Ishai, Sahai, Wagner 2003)

• Noisy leakage security (Prouff, Rivain 2013)

Masking (concrete view) 5

𝑦 = 𝑦1⊕𝑦2⊕⋯⊕𝑦𝑑−1⊕𝑦𝑑

?

• Probing security (Ishai, Sahai, Wagner 2003)

• Noisy leakage security (Prouff, Rivain 2013)

Masking (concrete view) 5

𝑦 = 𝑦1⊕𝑦2⊕⋯⊕𝑦𝑑−1⊕𝑦𝑑 n
o

ise
an

d
 in

d
ep

e
n

d
en

ce
(D

u
c, D

ziem
b

w
ski, Fau

st 2
0

1
4

)

Motivation / open questions

1. What happens with parallel implementations?
• For example: one probe reveals the shares’ sum

6

Motivation / open questions

1. What happens with parallel implementations?
• For example: one probe reveals the shares’ sum

2. How to test physical independence? (consolidating)

6

?

?

Motivation / open questions

1. What happens with parallel implementations?
• For example: one probe reveals the shares’ sum

2. How to test physical independence? (consolidating)

• W/O directly working in the noisy leakage model

6

?

?

Outline

• Introduction / motivation
• Side-channel attacks and noise
• Masking and leakage models

• Bounded moment model
• Masking intuition & BMM definition
• Probing security ⇒ BM security

• Parallel multiplication (& refreshing)

• BM security ⇏ probing security
• Inner product masking (with “non-mixing” leakages)
• Continuous security & refreshing gadgets

• Conclusions

Masking statistical intuition

• 2-share / 1-bit example, serial implementation

7

𝐿1 = 𝑦1 + 𝑛1

𝐿2 = 𝑦2 + 𝑛2

Masking statistical intuition

• 2-share / 1-bit example, parallel implementation

7

𝐿 = 𝑦1 + 𝑦2 + 𝑛

𝐿1 = 𝑦1 + 𝑛1

𝐿2 = 𝑦2 + 𝑛2

Masking statistical intuition

• 2-share / 1-bit example, parallel implementation

7

𝐿 = 𝑦1 + 𝑦2 + n

𝐿1 = 𝑦1 + 𝑛1

𝐿2 = 𝑦2 + 𝑛2
Definition (informal). An implementation is
secure at order 𝑜 in the bounded moment
model if all mixed statistical moments of order
up to 𝑜 of its leakage vectors are independent
of any sensitive variable manipulated

Outline

• Introduction / motivation
• Side-channel attacks and noise
• Masking and leakage models

• Bounded moment model
• Masking intuition & BMM definition
• Probing security ⇒ BM security

• Parallel multiplication (& refreshing)

• BM security ⇏ probing security
• Inner product masking (with “non-mixing” leakages)
• Continuous security & refreshing gadgets

• Conclusions

Abstract reduction (answer to Q1)

• Theorem (informal). A parallel implementation is
secure at order 𝑜 in the BMM if its serialization is
secure at order 𝑜 in the probing model where

• Adv𝑝𝑟 can (typically) probe 𝑜 = 𝑑 − 1 wires

• Adv𝑏𝑚 can observe any 𝐿 = 𝑖=1
𝑑 𝛼𝑖 ∙ 𝑦𝑖

8

Abstract reduction

• Theorem (informal). A parallel implementation is
secure at order 𝑜 in the BMM if its serialization is
secure at order 𝑜 in the probing model where

• Adv𝑝𝑟 can (typically) probe 𝑜 = 𝑑 − 1 wires

• Adv𝑏𝑚 can observe any 𝐿 = 𝑖=1
𝑑 𝛼𝑖 ∙ 𝑦𝑖

• Intuition: summing the shares (in ℝ) does not
break the independent leakage assumption

8

Abstract reduction

• Theorem (informal). A parallel implementation is
secure at order 𝑜 in the BMM if its serialization is
secure at order 𝑜 in the probing model where

• Adv𝑝𝑟 can (typically) probe 𝑜 = 𝑑 − 1 wires

• Adv𝑏𝑚 can observe any 𝐿 = 𝑖=1
𝑑 𝛼𝑖 ∙ 𝑦𝑖

• Intuition: summing the shares (in ℝ) does not
break the independent leakage assumption

• Main ≠ between probing and BM security
• Adv𝑏𝑚 can sum over all the shares!
• BM security is weaker (moments vs. distributions)

8

Concrete consequence

• If physically independent leakages, BM security
extends to actual measurements (e.g., 𝑑 = 3)

9

Concrete consequence (answer to Q2)

• If physically independent leakages, BM security
extends to actual measurements (e.g., 𝑑 = 3)

• If not, leakages are not independent

9

Outline

• Introduction / motivation
• Side-channel attacks and noise
• Masking and leakage models

• Bounded moment model
• Masking intuition & BMM definition
• Probing security ⇒ BM security

• Parallel multiplication (& refreshing)

• BM security ⇏ probing security
• Inner product masking (with “non-mixing” leakages)
• Continuous security & refreshing gadgets

• Conclusions

Serial multiplication

• ISW 2003: multiplication 𝑐 = 𝑎 × 𝑏

10

𝒂𝟏𝒃𝟏 𝒂𝟏𝒃𝟐 𝒂𝟏𝒃𝟑
𝒂𝟐𝒃𝟏 𝒂𝟐𝒃𝟐 𝒂𝟐𝒃𝟑
𝒂𝟑𝒃𝟏 𝒂𝟑𝒃𝟐 𝒂𝟑𝒃𝟑

⊕

𝟎 𝒓𝟏 𝒓𝟐
−𝒓𝟏 𝟎 𝒓𝟑
−𝒓𝟐 −𝒓𝟑 𝟎

⇒

𝒄𝟏
𝒄𝟐
𝒄𝟑

partial products refresh

c
o
m

p
re

s
s

Serial multiplication

• ISW 2003: multiplication 𝑐 = 𝑎 × 𝑏

• AES S-box (𝑛 = 8) implementation
• 𝑎 = 𝑎1⊕𝑎2⊕⋯⊕𝑎𝑑 (e.g., 𝑑 = 8)
• Each register stores an 𝑎𝑖 (i.e., a GF 28 element)
• Memory ∝ 𝑛 ∙ 𝑑, Time: ∝ 𝒅𝟐 GF 28 mult.
• AES S-box ≈ 3 multiplications (& 4 squarings)

10

𝒂𝟏𝒃𝟏 𝒂𝟏𝒃𝟐 𝒂𝟏𝒃𝟑
𝒂𝟐𝒃𝟏 𝒂𝟐𝒃𝟐 𝒂𝟐𝒃𝟑
𝒂𝟑𝒃𝟏 𝒂𝟑𝒃𝟐 𝒂𝟑𝒃𝟑

⊕

𝟎 𝒓𝟏 𝒓𝟐
−𝒓𝟏 𝟎 𝒓𝟑
−𝒓𝟐 −𝒓𝟑 𝟎

⇒

𝒄𝟏
𝒄𝟐
𝒄𝟑

partial products refresh

c
o
m

p
re

s
s

Parallel multiplication

• Main tweak: interleave & regularize

11

𝒂𝟏𝒃𝟏
𝒂𝟐𝒃𝟐
𝒂𝟑𝒃𝟑

⊕

𝒓𝟏
𝒓𝟐
𝒓𝟑
⊕

𝒂𝟏𝒃𝟑 𝒂𝟑𝒃𝟏
𝒂𝟐𝒃𝟏 𝒂𝟏𝒃𝟐
𝒂𝟑𝒃𝟐 𝒂𝟐𝒃𝟑

⊕

𝒓𝟑
𝒓𝟏
𝒓𝟐
⇒

𝒄𝟏
𝒄𝟐
𝒄𝟑

refresh

Parallel multiplication

• Main tweak: interleave & regularize

• AES S-box (𝑛 = 8) implementation
• 𝑎 = 𝑎1⊕𝑎2⊕⋯⊕𝑎𝑑 (e.g., 𝑑 = 8)
• Each register stores 𝑛 𝑎𝑖’s (i.e., GF 2 elements)
• Memory ∝ 𝑛 ∙ 𝑑, Time: ∝ 𝒅 GF 2 mult. (i.e., ANDs)
• AES bitslice S-box ≈ 32 AND gates (& 83 XORs)

11

refresh

𝒂𝟏𝒃𝟏
𝒂𝟐𝒃𝟐
𝒂𝟑𝒃𝟑

⊕

𝒓𝟏
𝒓𝟐
𝒓𝟑
⊕

𝒂𝟏𝒃𝟑 𝒂𝟑𝒃𝟏
𝒂𝟐𝒃𝟏 𝒂𝟏𝒃𝟐
𝒂𝟑𝒃𝟐 𝒂𝟐𝒃𝟑

⊕

𝒓𝟑
𝒓𝟏
𝒓𝟐
⇒

𝒄𝟏
𝒄𝟐
𝒄𝟑

Parallel multiplication

• Main tweak: interleave & regularize

• AES S-box (𝑛 = 8) implementation
• 𝑎 = 𝑎1⊕𝑎2⊕⋯⊕𝑎𝑑 (e.g., 𝑑 = 8)
• Each register stores 𝑛 𝑎𝑖’s (i.e., GF 2 elements)
• Memory ∝ 𝑛 ∙ 𝑑, Time: ∝ 𝒅 GF 2 mult. (i.e., ANDs)
• AES bitslice S-box ≈ 32 AND gates (& 83 XORs)

⇒ Performance gains with large 𝑑’s (8, 16, 32)

11

refresh

𝒂𝟏𝒃𝟏
𝒂𝟐𝒃𝟐
𝒂𝟑𝒃𝟑

⊕

𝒓𝟏
𝒓𝟐
𝒓𝟑
⊕

𝒂𝟏𝒃𝟑 𝒂𝟑𝒃𝟏
𝒂𝟐𝒃𝟏 𝒂𝟏𝒃𝟐
𝒂𝟑𝒃𝟐 𝒂𝟐𝒃𝟑

⊕

𝒓𝟑
𝒓𝟏
𝒓𝟐
⇒

𝒄𝟏
𝒄𝟐
𝒄𝟑

Security analysis

• We analyzed the SNI security of the gadgets
≈ composable probing security (Barthe et al. 2016)

12

Security analysis

• We analyzed the SNI security of the gadgets
≈ composable probing security (Barthe et al. 2016)

• Iterating (𝑑 − 1)/3 refresh is SNI for 𝑑 < 12

12

Security analysis

• We analyzed the SNI security of the gadgets
≈ composable probing security (Barthe et al. 2016)

• Iterating (𝑑 − 1)/3 refresh is SNI for 𝑑 < 12

• Multiplication is more tricky…

12

Outline

• Introduction / motivation
• Side-channel attacks and noise
• Masking and leakage models

• Bounded moment model
• Masking intuition & BMM definition
• Probing security ⇒ BM security

• Parallel multiplication (& refreshing)

• BM security ⇏ probing security
• Inner product masking (with “non-mixing” leakages)
• Continuous security & refreshing gadgets

• Conclusions

Specialized encodings

• Probing security is stronger than BM security
• (And also stronger than noisy leakage security)

• Is it sometimes “too strong”?
• i.e., breaks designs that are secure against DPA

13

Specialized encodings

• Probing security is stronger than BM security
• (And also stronger than noisy leakage security)

• Is it sometimes “too strong”?
• i.e., breaks designs that are secure against DPA

• Example: Boolean encoding (2 shares)

13

𝑦 = 𝑦1⊕𝑦2

Specialized encodings

• Probing security is stronger than BM security
• (And also stronger than noisy leakage security)

• Is it sometimes “too strong”?
• i.e., breaks designs that are secure against DPA

• Example: Boolean encoding (2 shares)

• IP masking in GF(28) with “non-mixing” leakages

13

𝑦 =

𝑖=1

2

𝑝𝑖 × 𝑠𝑖

𝑦 = 𝑦1⊕𝑦2

𝑝2 = 1 𝑝2 = 5 𝑝2 = 7

Outline

• Introduction / motivation
• Side-channel attacks and noise
• Masking and leakage models

• Bounded moment model
• Masking intuition & BMM definition
• Probing security ⇒ BM security

• Parallel multiplication (& refreshing)

• BM security ⇏ probing security
• Inner product masking (with “non-mixing” leakages)
• Continuous security & refreshing gadgets

• Conclusions

Continuous security

• So far we discussed “one-shot” probing attacks

14

Continuous security

• So far we discussed “one-shot” probing attacks

• Yet, side-channel attacks are usually continuous
• i.e, accumulate information

from multiple executions

14

Continuous security

• So far we discussed “one-shot” probing attacks

• Yet, side-channel attacks are usually continuous
• i.e, accumulate information

from multiple executions

• Typical issue: refreshing by add a share of 0
• Frequently used in practice
• Yet insecure in the continuous probing model
• What does it mean concretely?
• i.e., can we (sometimes) use such a refreshing?

14

Continuous probing attack 15

𝑎1
(1)

𝑎2
(1)

𝑎3
(1)

𝑎4
(1)

step 1

Accumulated knowledge: ∅

• Target: refresh(𝑎) = 𝑎 ⊕ 𝑟⊕ rot(𝑟)

Continuous probing attack 15

𝑎1
(1)

𝑎2
(1)

𝑎3
(1)

𝑎4
(1)

step 1

Accumulated knowledge: ∅

• Target: refresh(𝑎) = a⊕ 𝑟 ⊕ rot(𝑟)

Continuous probing attack 15

𝑎1
(1)

𝑎2
(1)

𝑎3
(1)

𝑎4
(1)

step 1

Accumulated knowledge: 𝑎1
(1)

• Target: refresh(𝑎) = a⊕ 𝑟 ⊕ rot(𝑟)

Continuous probing attack 15

𝑎1
(1)

𝑎2
(1)

𝑎3
(1)

𝑎4
(1)

step 1

Accumulated knowledge: 𝑎1
(1)

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑟4
(2)

𝑟4
(2)

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎4
(2)

step 2

• Target: refresh(𝑎) = a⊕ 𝑟 ⊕ rot(𝑟)

Continuous probing attack 15

𝑎1
(1)

𝑎2
(1)

𝑎3
(1)

𝑎4
(1)

step 1

Accumulated knowledge: 𝑎1
(1)

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑟4
(2)

𝑟4
(2)

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎4
(2)

step 2

• Target: refresh(𝑎) = a⊕ 𝑟 ⊕ rot(𝑟)

Continuous probing attack 15

𝑎1
(1)

𝑎2
(1)

𝑎3
(1)

𝑎4
(1)

step 1

Accumulated knowledge: 𝑎1
(1)

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑟4
(2)

𝑟4
(2)

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎4
(2)

step 2

• Target: refresh(𝑎) = a⊕ 𝑟 ⊕ rot(𝑟)

Continuous probing attack 15

𝑎1
(1)

𝑎2
(1)

𝑎3
(1)

𝑎4
(1)

step 1

Accumulated knowledge:

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑟4
(2)

𝑟4
(2)

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎4
(2)

step 2

𝑎1
(2)
⊕𝑎2
(2)

• Target: refresh(𝑎) = a⊕ 𝑟 ⊕ rot(𝑟)

Continuous probing attack 15

𝑎1
(1)

𝑎2
(1)

𝑎3
(1)

𝑎4
(1)

step 1

Accumulated knowledge:

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑟4
(2)

𝑟4
(2)

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎4
(2)

step 2

𝑎1
(2)
⊕𝑎2
(2)

𝑟1
(3)

𝑟2
(3)

𝑟3
(3)

𝑟4
(3)

𝑟4
(3)

𝑟1
(3)

𝑟2
(3)

𝑟3
(3)

𝑎1
(3)

𝑎2
(3)

𝑎3
(3)

𝑎4
(3)

step 3

• Target: refresh(𝑎) = a⊕ 𝑟 ⊕ rot(𝑟)

Continuous probing attack 15

𝑎1
(1)

𝑎2
(1)

𝑎3
(1)

𝑎4
(1)

step 1

Accumulated knowledge:

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑟4
(2)

𝑟4
(2)

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎4
(2)

step 2

𝑎1
(2)
⊕𝑎2
(2)

𝑟1
(3)

𝑟2
(3)

𝑟3
(3)

𝑟4
(3)

𝑟4
(3)

𝑟1
(3)

𝑟2
(3)

𝑟3
(3)

𝑎1
(3)

𝑎2
(3)

𝑎3
(3)

𝑎4
(3)

step 3

• Target: refresh(𝑎) = a⊕ 𝑟 ⊕ rot(𝑟)

Continuous probing attack 15

𝑎1
(1)

𝑎2
(1)

𝑎3
(1)

𝑎4
(1)

step 1

Accumulated knowledge:

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑟4
(2)

𝑟4
(2)

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎4
(2)

step 2

𝑎1
(2)
⊕𝑎2
(2)

𝑟1
(3)

𝑟2
(3)

𝑟3
(3)

𝑟4
(3)

𝑟4
(3)

𝑟1
(3)

𝑟2
(3)

𝑟3
(3)

𝑎1
(3)

𝑎2
(3)

𝑎3
(3)

𝑎4
(3)

step 3

• Target: refresh(𝑎) = a⊕ 𝑟 ⊕ rot(𝑟)

Continuous probing attack 15

𝑎1
(1)

𝑎2
(1)

𝑎3
(1)

𝑎4
(1)

step 1

Accumulated knowledge:

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑟4
(2)

𝑟4
(2)

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎4
(2)

step 2

𝑎1
(3)
⊕𝑎2
(3)
⊕𝑎3
(3)

𝑟1
(3)

𝑟2
(3)

𝑟3
(3)

𝑟4
(3)

𝑟4
(3)

𝑟1
(3)

𝑟2
(3)

𝑟3
(3)

𝑎1
(3)

𝑎2
(3)

𝑎3
(3)

𝑎4
(3)

step 3

• Target: refresh(𝑎) = a⊕ 𝑟 ⊕ rot(𝑟)

Continuous probing attack 15

𝑎1
(1)

𝑎2
(1)

𝑎3
(1)

𝑎4
(1)

step 1

⇒ After 𝑑 iterations, 𝑎 is learned in full by Adv𝑝𝑟

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑟4
(2)

𝑟4
(2)

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎4
(2)

step 2 step 3

…
𝑟1
(3)

𝑟2
(3)

𝑟3
(3)

𝑟4
(3)

𝑟4
(3)

𝑟1
(3)

𝑟2
(3)

𝑟3
(3)

𝑎1
(3)

𝑎2
(3)

𝑎3
(3)

𝑎4
(3)

• Target: refresh(𝑎) = a⊕ 𝑟 ⊕ rot(𝑟)

Continuous probing attack

• Target: refresh(𝑎) = a⊕ 𝑟 ⊕ rot(𝑟)

• Not possible in the BMM. Intuition: adaptation does
not help since Adv𝑏𝑚 can anyway sum over all shares!

15

𝑎1
(1)

𝑎2
(1)

𝑎3
(1)

𝑎4
(1)

step 1

⇒ After 𝑑 iterations, 𝑎 is learned in full by Adv𝑝𝑟

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑟4
(2)

𝑟4
(2)

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎4
(2)

step 2 step 3

…
𝑟1
(3)

𝑟2
(3)

𝑟3
(3)

𝑟4
(3)

𝑟4
(3)

𝑟1
(3)

𝑟2
(3)

𝑟3
(3)

𝑎1
(3)

𝑎2
(3)

𝑎3
(3)

𝑎4
(3)

Continuous probing attack

• Target: refresh(𝑎) = a⊕ 𝑟 ⊕ rot(𝑟)

• Impact: refresh(.) can be used to refresh the key of a
key homomorphic primitive (⇒ fully linear overheads)

15

𝑎1
(1)

𝑎2
(1)

𝑎3
(1)

𝑎4
(1)

step 1

⇒ After 𝑑 iterations, 𝑎 is learned in full by Adv𝑝𝑟

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑟4
(2)

𝑟4
(2)

𝑟1
(2)

𝑟2
(2)

𝑟3
(2)

𝑎1
(2)

𝑎2
(2)

𝑎3
(2)

𝑎4
(2)

step 2 step 3

…
𝑟1
(3)

𝑟2
(3)

𝑟3
(3)

𝑟4
(3)

𝑟4
(3)

𝑟1
(3)

𝑟2
(3)

𝑟3
(3)

𝑎1
(3)

𝑎2
(3)

𝑎3
(3)

𝑎4
(3)

Outline

• Introduction / motivation
• Side-channel attacks and noise
• Masking and leakage models

• Bounded moment model
• Masking intuition & BMM definition
• Probing security ⇒ BM security

• Parallel multiplication (& refreshing)

• BM security ⇏ probing security
• Inner product masking (with “non-mixing” leakages)
• Continuous security & refreshing gadgets

• Conclusions

Conclusions

• Probing security is relevant to parallel implem.

16

Conclusions

• Probing security is relevant to parallel implem.
• BMM suggests a principled path to security eval.

16

probing security noisy leakages security

bounded moment security

[DDF14]

+ noise,

Conclusions

• Probing security is relevant to parallel implem.
• BMM suggests a principled path to security eval.

• Parallel implem. are appealing for masking
• Leverage the memory needed to store shares

16

probing security noisy leakages security

bounded moment security

[DDF14]

+ noise,

Conclusions

• Probing security is relevant to parallel implem.
• BMM suggests a principled path to security eval.

• Parallel implem. are appealing for masking
• Leverage the memory needed to store shares

• Cont. probing security sometimes “too strong”

16

probing security noisy leakages security

bounded moment security

[DDF14]

+ noise,

THANKS
http://perso.uclouvain.be/fstandae/

http://perso.uclouvain.be/fstandae/

