Parallel Implementations of Masking Schemes
and the Bounded Moment Leakage Model

G. Barthe, F. Dupressoir, S. Faust,
B. Grégoire, F.-X. Standaert, P.-Y. Strub

IMDEA (Spain), Univ. Surrey (UK), Univ. Bochum (Germany), INRIA Sophia-
Antipolis (France), UCL (Belgium), Ecole Polytechnique (France)

EUROCRYPT 2017, Paris, France

* |ntroduction / motivation
 Side-channel attacks and noise
* Masking and leakage models

e Bounded moment model
 Masking intuition & BMM definition
* Probing security = BM security

* Parallel multiplication (& refreshing)

 BM security # probing security
* Inner product masking (with “non-mixing” leakages)
 Continuous security & refreshing gadgets

e Conclusions

* |ntroduction / motivation
e Side-channel attacks and noise

Side-channel attacks 1

2128

computation
success probability

32 64 96 128

of measurements

* =~ physical attacks that decreases security
exponentially in the # of measurements

Noise (hardware countermeasures)

25 -
— =0
=1
2 L
1.5¢F
L
[m]
o
1 L
0.5
0 S
0 0.5 1 1.5 2 25 3

Noise (hardware countermeasures)

PDF
=]
o -

sample space

Noise (hardware countermeasures)

* Additive noise = cost X 2 = security X 2
= not a good (crypto) security parameter

* |ntroduction / motivation

* Masking and leakage models

Masking (= noise amplification)

e Example: Boolean encoding

Yy=y1 0 Y20 D Ya-1DVa
* With Y1 Y2, Yd-2Yd-1 < {O'l}n

Masking (abstract view) 4

* Probing security (Ishai, Sahai, Wagner 2003)

y=y1 Dy, D - Dyag—1Dyq

Masking (abstract view) 4

* Probing security (Ishai, Sahai, Wagner 2003)

y=y1 Dy, D - Dyag—1Dyq

N

* d — 1 probes do not reveal anythingon y

Masking (abstract view) 4

* Probing security (Ishai, Sahai, Wagner 2003)

y=y1 Dy, D - Dyag—1Dyq

I

 But d probes completely reveal y

Masking (concrete view)

yl@yz@ EByd 1 D ya

Ieakage

1 2 3.4, ..,d1 d

0 100 200 300 400 500 600 | time samples

(a) serial implementation.

* Bounded information leakage MI(Y;; L)%

Masking (concrete view)

yl@yz@ EByd 1 D ya

Ieakage

1 2 3.4, ..,d1 d

0 100 200 300 400 500 600 | time samples

(a) serial implementation.

Noisy leakage security (Prouff, Rivain 2013)

Masking (concrete view)

Probing security (Ishai, Sahai, Wagner 2003)

(rTOC 3sneq ‘Dismqwiaizg anQ)
9Judpuadapul pue asiou

Noisy leakage security (Prouff, Rivain 2013)

Motivation / open questions

1. What happens with parallel implementations?

leakage

For example: one probe reveals the shares’ sum

/

W

~——
1

[
-

0

100

200

(b) parallel implementation.

Motivation / open questions

4
|

2. How to test physical independence? (consolidating)
-
|- i'.

L]

JRAVAVAS

leakage
leakage

S S~—~—
1 2 3.4, ...,d1 d o 1
0 100 200 300 400 500 600 | time samples - 0 100 200

(a) serial implementation. (b) parallel implementation.

Motivation / open questions

 W/O directly working in the noisy leakage model

e Bounded moment model
 Masking intuition & BMM definition

Masking statistical intuition

e 2-share/ 1-bit example, serial implementation

L1=y1+n1 1 + E. 1 + @

L, =y, +n, o +t@® 0 | P

(a) Y=0, serial. (b) Y =1, serial.

Masking statistical intuition

e 2-share / 1-bit example, parallel implementation

pdf
pdf

L = V1 + Vo +n MT/\ > L1+l2 n/\ » [1+[2
1

2 0o 1 2

(c) Y=0, parallel. (d) Y=1, parallel.

Masking statistical intuition

Definition (informal). An implementation is
secure at order o in the bounded moment
model if all mixed statistical moments of order
up to o of its leakage vectors are independent
of any sensitive variable manipulated

e Bounded moment model

* Probing security = BM security

Abstract reduction (answer to Q1)

* Theorem (informal). A parallel implementation is
secure at order o in the BMM |f its serialization is
secure at order o in the probing model where

* Advy, can (typically) probe 0 = d — 1 wires

 Advy,, can observe any L = ?zl ai* Yi

Abstract reduction 8

* |ntuition: summing the shares (in R) does not
break the independent leakage assumption

Abstract reduction

 Theorem (informal). A parallel implementation is
secure at order o in the BMM |if its serialization is
secure at order o in the probing model where

* Advy, can (typically) probe 0 = d — 1 wires
d

* Advy,, canobserveany L = ;. a; - y;
* [ntuition: summing the shares (in R) does not
break the independent leakage assumption

* Main # between probing and BM security
* Advy,, can sum over all the shares!
e BM security is weaker (moments vs. distributions)

Concrete consequence

* |f physically independent leakages, BM security
extends to actual measurements (e.g., d = 3)

5

T T T 4- T T T]
0 2t]
] —— 4
g -S| °
5 -2f 1
= -10} : _al |
0 25 5 75 10 0 2.5 5 75 10
Time [us] Time [us]
(a) Sample trace (b) 1st-order
TRV T T
2t - o 1} A j
.) ZJMWWWUWMW
ol _ 0} A
_27 d|
-4t ‘ ‘ ‘ 1 -4} J J J |
0 2.5 5 7.5 10 0 2.5 5 7.5 10
Time [us] Time [us]

(c) 2nd-order (d) 3rd-order

Concrete consequence (answer to Q2)

* |[f not, leakages are not independent

* Parallel multiplication (& refreshing)

Serial multiplication

ISW 2003: multiplicationc = a X b

_a1b1
a,bq
asbq

a.b,
ab,
asb,

a1b3_
a, b3

asbs

partial products

D

| O 1‘1
—1‘1 O
—Tr T3

refresh

ra

rs

O_

|

C1
C2
C3

|

ssaldwod

Serial multiplication

 AES S-box (n = 8) implementation
s a=a;Da, D Day(eg.,d=28)
* Each register stores an q; (i.e., a GF(28) element)
e Memory x n-d, Time: x d? GF(28) mult.
 AES S-box = 3 multiplications (& 4 squarings)

Parallel multiplication

Main tweak: interleave & regularize

albl
a, b,

asbs

o e
1

_a1b3
a, b,

asb,

refresh

a3b1_
a1b2

a,bs

o)=L
|

Parallel multiplication

 AES S-box (n = 8) implementation
c a=a,Da, - Dayleg.,d=28)
* Each register stores n a;’s (i.e., GF(2) elements)
e Memory X n-d, Time: x d GF(2) mult. (i.e., ANDs)
e AES bitslice S-box = 32 AND gates (& 83 XORs)

Parallel multiplication

* Main tweak: interleave & regularize

ofof: e

refresh

“[2

 AES S-box (n = 8) implementation

s a=a,Da, D - Day(eg.,d=28)

* Each register stores n a;’s (i.e., GF(2) elements)

e Memoryxn-d, Time: < dGF(2) mult. (i.e., ANDs)
 AES bitslice S-box =~ 32 AND gates (& 83 XORs)

= Performance gains with large d’s (8, 16, 32) @

Security analysis

 We analyzed the SNI security of the gadgets
~ composable probing security (Barthe et al. 2016)

Security analysis

» |terating [(d — 1)/3] refresh is SNI ford < 12

Security analysis

 We analyzed the SNI security of the gadgets
~ composable probing security (Barthe et al. 2016)

* [terating [(d — 1)/3] refresh is SNl for d < 12

 Multiplication is more tricky...

. rand rand
Algorithm d (d- 1)-SNI (our alg.) (ISW 2003)
multiplication 3 v 3 3
d >4 X d(d-1)/4 d(d-1)/2

4 ' 8 6

5 ' 10 10

refresh o multiplication 6 Vv 18 15
7 V 21 21

8 V 24 28

 BM security # probing security
* Inner product masking (with “non-mixing” leakages)

Specialized encodings 13

* Probing security is stronger than BM security
 (And also stronger than noisy leakage security)

* Isit sometimes “too strong”?
* j.e., breaks designs that are secure against DPA

Specialized encodings

 Example: Boolean encoding (2 shares)

y =y, Dy, A A

Specialized encodings

* |P masking in GF(28) with “non-mixing” leakages

2
y=zpi><5i
i=1

AN

A

S\

4N

p, =1

p, =5

P2 =7

 Continuous security & refreshing gadgets

Continuous security 14

 So far we discussed “one-shot” probing attacks

Continuous security

* Yet, side-channel attacks are usually continuous

 j.e, accumulate information
from multiple executions |

Continuous security

e Typical issue: refreshing by add a share of O
 Frequently used in practice
* Yetinsecure in the continuous probing model
* What does it mean concretely?
e j.e., can we (sometimes) use such a refreshing?

Continuous probing attack

Target: refresh(a) = a @ r D rot(r)

step 1

oD

Accumulated knowledge: @

Continuous probing attack

* Target: refresh(a) =a @ r D rot(r)

step 1

ey
e {9

oD

Accumulated knowledge: @

Continuous probing attack

Target: refresh(a) = a @ r D rot(r)

step 1

oD

Accumulated knowledge: agl)

Continuous probing attack

* Target: refresh(a) =a @ r D rot(r)

step 1 step 2

agl) rl(z) r 4(2) agz)
agl) TZ(Z) rl(z) agz)
agl) T3(2) TZ(Z) agz)
aff) ’r4(2) 7,3(2) aL(LZ)

Accumulated knowledge: agl)

Continuous probing attack

* Target: refresh(a) =a @ r D rot(r)

step 1 step 2

agl) Tl(z) r 4(2) agz)
agl) TZ(Z) rl(z) agz)
agl) T3(2) TZ(Z) agz)
aff) ’r4(2) 7,3(2) aL(LZ)

Accumulated knowledge: agl)

Continuous probing attack

* Target: refresh(a) =a @ r D rot(r)

step 1 step 2

R
agl) TZ(Z) rl(z) agz)
agl) TB(Z) TZ(Z) agz)
aff) ’r4(2) 7,3(2) aL(LZ)

Accumulated knowledge: agl)

Continuous probing attack

* Target: refresh(a) =a @ r D rot(r)

step 1 step 2

agl) 7,1(2) r 4(2) agz)
agl) TZ(Z) rl(z) agz)
agl) T3(2) TZ(Z) agz)
aff) ’r4(2) 7,3(2) aL(LZ)

Accumulated knowledge: aiz) D agz)

Continuous probing attack

Target: refresh(a) = a @ r D rot(r)

step 1 step 2 step 3
agl) 7,1(2) T4(2) agz) 7‘1(3) r 4(3)
agl) TZ(Z) rl(z) agz) 7‘2(3) 7ﬂ1(3)
agl) T3(2) TZ(Z) agz) T3(3) 7”2(3)
aff) ’r4(2) 7,3(2) aL(LZ) 7‘4(3) ’r3(3)

Accumulated knowledge: aiz) D agz)

Continuous probing attack

* Target: refresh(a) =a @ r D rot(r)

step 1 step 2 step 3

agl) 7,1(2) T4(2) agz) 7‘1(3) T4(3) a§3)
agl) TZ(Z) T1(2) agz) r2(3) 7‘1(3) ag3)
agl) T3(2) TZ(Z) agz) r3(3) 7”2(3) a§3)
aff) ’r4(2) 7,3(2) aL(LZ) 7‘4(3) ’r3(3) le)

Accumulated knowledge: a§2) D agz)

Continuous probing attack

* Target: refresh(a) =a @ r D rot(r)

step 1 step 2 step 3

agl) rl(z) T4(2) agz) r1(3) T4(3) -
agl) TZ(Z) rl(z) agz) r2(3) 7‘1(3) -
agl) TB(Z) TZ(Z) agz) T3(3) 7”2(3) a§3)
aff) ’r4(2) 7,3(2) aL(LZ) T4(3) ’r3(3) af)

Accumulated knowledge: a§2) D agz)

Continuous probing attack

* Target: refresh(a) =a @ r D rot(r)

step 1 step 2 step 3

agl) 7,1(2) T4(2) agz) 7‘1(3) T4(3) a§3)
agl) TZ(Z) T1(2) agz) r2(3) 7‘1(3) ag?’)
agl) T3(2) TZ(Z) agz) r3(3) 7”2(3) a§3)
aff) ’r4(2) 7,3(2) aL(LZ) 7‘4(3) ’r3(3) le)

Accumulated knowledge: af) D agg) D af)

Continuous probing attack

* Target: refresh(a) =a @ r D rot(r)

step 1 step 2 step 3

agl) 7,1(2) T4(2) agz) 7‘1(3) T4(3) a§3)
agl) TZ(Z) T1(2) agz) r2(3) 7‘1(3) ag?’)
agl) T3(2) TZ(Z) agz) r3(3) 7”2(3) a§3)
aff) ’r4(2) 7,3(2) aL(LZ) 7‘4(3) ’r3(3) le)

= After d iterations, a is learned in full by Adv,,,

Continuous probing attack

* Not possible in the BMM. Intuition: adaptation does
not help since Advy,,, can anyway sum over all shares!

Continuous probing attack

 Impact: refresh(.) can be used to refresh the key of a
key homomorphic primitive (= fully linear overheads)

e Conclusions

Conclusions 16

* Probing security is relevant to parallel implem.

Conclusions

e BMM suggests a principled path to security eval.

[DDF14]

probing security > noisy leakages security
+ noise, L

bounded moment security

Conclusions

 Parallel implem. are appealing for masking
 Leverage the memory needed to store shares

Conclusions 16

* Probing security is relevant to parallel implem.
* BMM suggests a principled path to security eval.
[DDF14]

probing security > noisy leakages security
+ noise, L

e
S
0\
XO

bounded moment security

* Parallel implem. are appealing for masking
* Leverage the memory needed to store shares

 Cont. probing security sometimes “too strong”

THANKS

http://perso.uclouvain.be/fstandae/

http://perso.uclouvain.be/fstandae/

