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Side-channel attacks

• ≈ physical attacks that decreases security 
exponentially in the # of measurements
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Noise (hardware countermeasures) 2
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Noise (hardware countermeasures)

• Additive noise ≈ cost × 2⇒ security × 2
⇒ not a good (crypto) security parameter
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Masking (≈ noise amplification)

• Example: Boolean encoding

• With 𝑦1, 𝑦2, … , 𝑦𝑑−2, 𝑦𝑑−1 ← {0,1}
𝑛
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𝑦 = 𝑦1⊕𝑦2⊕⋯⊕𝑦𝑑−1⊕𝑦𝑑



Masking (abstract view)

• Probing security (Ishai, Sahai, Wagner 2003)
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Masking (abstract view)

• Probing security (Ishai, Sahai, Wagner 2003)

• 𝑑 − 1 probes do not reveal anything on 𝑦
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Masking (abstract view)

• Probing security (Ishai, Sahai, Wagner 2003)

• But 𝑑 probes completely reveal 𝑦
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𝑦 = 𝑦1⊕𝑦2⊕⋯⊕𝑦𝑑−1⊕𝑦𝑑

y



• Probing security (Ishai, Sahai, Wagner 2003)

• Bounded information leakage MI(𝑌𝑖; 𝐿)
𝑑
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• Probing security (Ishai, Sahai, Wagner 2003)

• Noisy leakage security (Prouff, Rivain 2013)
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• Probing security (Ishai, Sahai, Wagner 2003)

• Noisy leakage security (Prouff, Rivain 2013)
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Motivation / open questions

1. What happens with parallel implementations?
• For example: one probe reveals the shares’ sum
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Motivation / open questions

1. What happens with parallel implementations?
• For example: one probe reveals the shares’ sum

2. How to test physical independence? (consolidating)

• W/O directly working in the noisy leakage model
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Masking statistical intuition

• 2-share / 1-bit example, serial implementation
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𝐿1 = 𝑦1 + 𝑛1

𝐿2 = 𝑦2 + 𝑛2
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Masking statistical intuition

• 2-share / 1-bit example, parallel implementation

7

𝐿 = 𝑦1 + 𝑦2 + n

𝐿1 = 𝑦1 + 𝑛1

𝐿2 = 𝑦2 + 𝑛2
Definition (informal). An implementation is 
secure at order 𝑜 in the bounded moment 
model if all mixed statistical moments of order 
up to 𝑜 of its leakage vectors are independent 
of any sensitive variable manipulated
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Abstract reduction (answer to Q1)

• Theorem (informal). A parallel implementation is 
secure at order 𝑜 in the BMM if its serialization is 
secure at order 𝑜 in the probing model where

• Adv𝑝𝑟 can (typically) probe 𝑜 = 𝑑 − 1 wires

• Adv𝑏𝑚 can observe any 𝐿 =  𝑖=1
𝑑 𝛼𝑖 ∙ 𝑦𝑖
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Abstract reduction 

• Theorem (informal). A parallel implementation is 
secure at order 𝑜 in the BMM if its serialization is 
secure at order 𝑜 in the probing model where

• Adv𝑝𝑟 can (typically) probe 𝑜 = 𝑑 − 1 wires

• Adv𝑏𝑚 can observe any 𝐿 =  𝑖=1
𝑑 𝛼𝑖 ∙ 𝑦𝑖

• Intuition: summing the shares (in ℝ) does not 
break the independent leakage assumption

• Main ≠ between probing and BM security
• Adv𝑏𝑚 can sum over all the shares!
• BM security is weaker (moments vs. distributions)
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Concrete consequence 

• If physically independent leakages, BM security 
extends to actual measurements (e.g., 𝑑 = 3)
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Concrete consequence (answer to Q2)

• If physically independent leakages, BM security 
extends to actual measurements (e.g., 𝑑 = 3)

• If not, leakages are not independent
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Serial multiplication

• ISW 2003: multiplication 𝑐 = 𝑎 × 𝑏
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Serial multiplication

• ISW 2003: multiplication 𝑐 = 𝑎 × 𝑏

• AES S-box (𝑛 = 8) implementation 
• 𝑎 = 𝑎1⊕𝑎2⊕⋯⊕𝑎𝑑 (e.g., 𝑑 = 8)
• Each register stores an 𝑎𝑖 (i.e., a GF 28 element)
• Memory ∝ 𝑛 ∙ 𝑑, Time: ∝ 𝒅𝟐 GF 28 mult. 
• AES S-box ≈ 3 multiplications (& 4 squarings)
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Parallel multiplication

• Main tweak: interleave & regularize
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Parallel multiplication

• Main tweak: interleave & regularize

• AES S-box (𝑛 = 8) implementation
• 𝑎 = 𝑎1⊕𝑎2⊕⋯⊕𝑎𝑑 (e.g., 𝑑 = 8)
• Each register stores 𝑛 𝑎𝑖’s (i.e., GF 2 elements)
• Memory ∝ 𝑛 ∙ 𝑑, Time: ∝ 𝒅 GF 2 mult. (i.e., ANDs) 
• AES bitslice S-box ≈ 32 AND gates (& 83 XORs)
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Parallel multiplication

• Main tweak: interleave & regularize

• AES S-box (𝑛 = 8) implementation
• 𝑎 = 𝑎1⊕𝑎2⊕⋯⊕𝑎𝑑 (e.g., 𝑑 = 8)
• Each register stores 𝑛 𝑎𝑖’s (i.e., GF 2 elements)
• Memory ∝ 𝑛 ∙ 𝑑, Time: ∝ 𝒅 GF 2 mult. (i.e., ANDs) 
• AES bitslice S-box ≈ 32 AND gates (& 83 XORs)

⇒ Performance gains with large 𝑑’s (8, 16, 32)
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Security analysis 

• We analyzed the SNI security of the gadgets        
≈ composable probing security (Barthe et al. 2016)
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Security analysis 

• We analyzed the SNI security of the gadgets        
≈ composable probing security (Barthe et al. 2016)

• Iterating (𝑑 − 1)/3 refresh is SNI for 𝑑 < 12

• Multiplication is more tricky… 
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• Is it sometimes “too strong”?
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Specialized encodings

• Probing security is stronger than BM security
• (And also stronger than noisy leakage security)

• Is it sometimes “too strong”?
• i.e., breaks designs that are secure against DPA  

• Example: Boolean encoding (2 shares)

• IP masking in GF(28) with “non-mixing” leakages

13

𝑦 = 

𝑖=1

2

𝑝𝑖 × 𝑠𝑖

𝑦 = 𝑦1⊕𝑦2

𝑝2 = 1 𝑝2 = 5 𝑝2 = 7
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Continuous security

• So far we discussed “one-shot” probing attacks
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Continuous security

• So far we discussed “one-shot” probing attacks

• Yet, side-channel attacks are usually continuous
• i.e, accumulate information

from multiple executions

• Typical issue: refreshing by add a share of 0
• Frequently used in  practice
• Yet insecure in the continuous probing model
• What does it mean concretely?
• i.e., can we (sometimes) use such a refreshing?

14
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Continuous probing attack 

• Target: refresh(𝑎) = a⊕ 𝑟 ⊕ rot(𝑟)

• Not possible in the BMM. Intuition: adaptation does 
not help since Adv𝑏𝑚 can anyway sum over all shares!
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Continuous probing attack 

• Target: refresh(𝑎) = a⊕ 𝑟 ⊕ rot(𝑟)

• Impact: refresh( . ) can be used to refresh the key of a 
key homomorphic primitive (⇒ fully linear overheads) 
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Conclusions

• Probing security is relevant to parallel implem.
• BMM suggests a principled path to security eval.

• Parallel implem. are appealing for masking 
• Leverage the memory needed to store shares

• Cont. probing security sometimes “too strong”
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