Parallel Implementations of Masking Schemes and the Bounded Moment Leakage Model

G. Barthe, F. Dupressoir, S. Faust, B. Grégoire, **F.-X. Standaert**, P.-Y. Strub

IMDEA (Spain), Univ. Surrey (UK), Univ. Bochum (Germany), INRIA Sophia-Antipolis (France), UCL (Belgium), Ecole Polytechnique (France)

EUROCRYPT 2017, Paris, France

Outline

- Introduction / motivation
 - Side-channel attacks and noise
 - Masking and leakage models
- Bounded moment model
 - Masking intuition & BMM definition
 - Probing security \Rightarrow BM security
- Parallel multiplication (& refreshing)
- BM security ⇒ probing security
 - Inner product masking (with "non-mixing" leakages)
 - Continuous security & refreshing gadgets
- Conclusions

Outline

- Introduction / motivation
 - Side-channel attacks and noise
 - Masking and leakage models
- Bounded moment model
 - Masking intuition & BMM definition
 - Probing security \Rightarrow BM security
- Parallel multiplication (& refreshing)
- BM security ⇒ probing security
 - Inner product masking (with "non-mixing" leakages)
 - Continuous security & refreshing gadgets
- Conclusions

Side-channel attacks

of measurements

 ≈ physical attacks that decreases security exponentially in the # of measurements

Noise (hardware countermeasures)

Noise (hardware countermeasures)

•s=0

s=1

3

Noise (hardware countermeasures)

Additive noise ≈ cost × 2 ⇒ security × 2
 ⇒ not a good (crypto) security parameter

Outline

- Introduction / motivation
 - Side-channel attacks and noise
 - Masking and leakage models
- Bounded moment model
 - Masking intuition & BMM definition
 - Probing security \Rightarrow BM security
- Parallel multiplication (& refreshing)
- BM security ⇒ probing security
 - Inner product masking (with "non-mixing" leakages)
 - Continuous security & refreshing gadgets
- Conclusions

• Example: Boolean encoding

$$y = y_1 \oplus y_2 \oplus \cdots \oplus y_{d-1} \oplus y_d$$

• With $y_1, y_2, \dots, y_{d-2}, y_{d-1} \leftarrow \{0, 1\}^n$

• d-1 probes do not reveal anything on y

• But *d* probes completely reveal *y*

Bounded information leakage MI(Y_i; L)^d

Noisy leakage security (Prouff, Rivain 2013)

Masking (concrete view)

• Probing security (Ishai, Sahai, Wagner 2003)

Noisy leakage security (Prouff, Rivain 2013)

Motivation / open questions

- 1. What happens with parallel implementations?
 - For example: one probe reveals the shares' sum

Motivation / open questions

1. What happens with parallel implementations?

- For example: one probe reveals the shares' sum
- 2. How to test physical independence? (consolidating)

Motivation / open questions

1. What happens with parallel implementations?

- For example: one probe reveals the shares' sum
- 2. How to test physical independence? (consolidating)

W/O directly working in the noisy leakage model

Outline

- Introduction / motivation
 - Side-channel attacks and noise
 - Masking and leakage models
- Bounded moment model
 - Masking intuition & BMM definition
 - Probing security \Rightarrow BM security
- Parallel multiplication (& refreshing)
- BM security ⇒ probing security
 - Inner product masking (with "non-mixing" leakages)
 - Continuous security & refreshing gadgets
- Conclusions

• 2-share / 1-bit example, <u>serial</u> implementation

2-share / 1-bit example, parallel implementation

• 2-share / 1-bit example, parallel implementation

 $L_{1} = v_{1} + n_{1}$ $L_{2} = \begin{array}{l} \text{Definition (informal). An implementation is} \\ secure at order o in the bounded moment \\ model if all <u>mixed statistical moments</u> of order \\ up to o of its leakage vectors are independent \\ of any sensitive variable manipulated \\ \end{array}$

 $L = y_1 + y_2 + n$

0 1 2

0 1 2

bd

(c) Y = 0, parallel.

(d) Y = 1, parallel.

Outline

- Introduction / motivation
 - Side-channel attacks and noise
 - Masking and leakage models
- Bounded moment model
 - Masking intuition & BMM definition
 - Probing security \Rightarrow BM security
- Parallel multiplication (& refreshing)
- BM security ⇒ probing security
 - Inner product masking (with "non-mixing" leakages)
 - Continuous security & refreshing gadgets
- Conclusions

- **Theorem** (informal). A parallel implementation is secure at order o in the BMM if its serialization is secure at order o in the probing model where
 - Adv_{pr} can (typically) probe o = d 1 wires
 - Adv_{bm} can observe any $L = \sum_{i=1}^{d} \alpha_i \cdot y_i$

- **Theorem** (informal). A parallel implementation is secure at order o in the BMM if its serialization is secure at order o in the probing model where
 - Adv_{pr} can (typically) probe o = d 1 wires
 - Adv_{bm} can observe any $L = \sum_{i=1}^{d} \alpha_i \cdot y_i$
- Intuition: summing the shares (in \mathbb{R}) does not break the independent leakage assumption

- **Theorem** (informal). A parallel implementation is secure at order o in the BMM if its serialization is secure at order o in the probing model where
 - Adv_{pr} can (typically) probe o = d 1 wires
 - Adv_{bm} can observe any $L = \sum_{i=1}^{d} \alpha_i \cdot y_i$
- Intuition: summing the shares (in \mathbb{R}) does not break the independent leakage assumption
- Main ≠ between probing and BM security
 - Adv_{bm} can sum over **all** the shares!
 - BM security is weaker (moments vs. distributions)

• If physically independent leakages, BM security extends to actual measurements (e.g., d = 3)

Concrete consequence (answer to Q2)

• If physically independent leakages, BM security extends to actual measurements (e.g., d = 3)

If not, leakages are not independent

Outline

- Introduction / motivation
 - Side-channel attacks and noise
 - Masking and leakage models
- Bounded moment model
 - Masking intuition & BMM definition
 - Probing security \Rightarrow BM security
- Parallel multiplication (& refreshing)
- BM security ⇒ probing security
 - Inner product masking (with "non-mixing" leakages)
 - Continuous security & refreshing gadgets
- Conclusions

Serial multiplication

• ISW 2003: multiplication $c = a \times b$

$$\begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{bmatrix} \oplus \begin{bmatrix} 0 & r_1 & r_2 \\ -r_1 & 0 & r_3 \\ -r_2 & -r_3 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} \xrightarrow{\text{oppegee}}_{\mathcal{S}}$$
partial products refresh

• ISW 2003: multiplication $c = a \times b$

$$\begin{bmatrix} a_1b_1 & a_1b_2 & a_1b_3 \\ a_2b_1 & a_2b_2 & a_2b_3 \\ a_3b_1 & a_3b_2 & a_3b_3 \end{bmatrix} \bigoplus \begin{bmatrix} 0 & r_1 & r_2 \\ -r_1 & 0 & r_3 \\ -r_2 & -r_3 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} \xrightarrow{\text{oppress}}$$
partial products refresh

- AES S-box (n = 8) implementation
 - $a = a_1 \oplus a_2 \oplus \dots \oplus a_d$ (e.g., d = 8)
 - Each register stores an a_i (i.e., a GF(2⁸) element)
 - Memory $\propto n \cdot d$, Time: $\propto d^2$ GF(2⁸) mult.
 - AES S-box ≈ 3 multiplications (& 4 squarings)

Parallel multiplication

• Main tweak: interleave & regularize

$$\begin{bmatrix} a_1b_1 \\ a_2b_2 \\ a_3b_3 \end{bmatrix} \oplus \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} \oplus \begin{bmatrix} a_1b_3 & a_3b_1 \\ a_2b_1 & a_1b_2 \\ a_3b_2 & a_2b_3 \end{bmatrix} \oplus \begin{bmatrix} r_3 \\ r_1 \\ r_2 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$
refresh

• Main tweak: interleave & regularize

$$\begin{bmatrix} a_1b_1 \\ a_2b_2 \\ a_3b_3 \end{bmatrix} \oplus \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} \oplus \begin{bmatrix} a_1b_3 & a_3b_1 \\ a_2b_1 & a_1b_2 \\ a_3b_2 & a_2b_3 \end{bmatrix} \oplus \begin{bmatrix} r_3 \\ r_1 \\ r_2 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$
refresh

- AES S-box (n = 8) implementation
 - $a = a_1 \oplus a_2 \oplus \dots \oplus a_d$ (e.g., d = 8)
 - Each register stores $n a_i$'s (i.e., GF(2) elements)
 - Memory $\propto n \cdot d$, Time: $\propto d$ GF(2) mult. (i.e., ANDs)
 - AES bitslice S-box \approx 32 AND gates (& 83 XORs)

• Main tweak: interleave & regularize

$$\begin{bmatrix} a_1b_1 \\ a_2b_2 \\ a_3b_3 \end{bmatrix} \oplus \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix} \oplus \begin{bmatrix} a_1b_3 & a_3b_1 \\ a_2b_1 & a_1b_2 \\ a_3b_2 & a_2b_3 \end{bmatrix} \oplus \begin{bmatrix} r_3 \\ r_1 \\ r_2 \end{bmatrix} \Rightarrow \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}$$
refresh

- AES S-box (n = 8) implementation
 - $a = a_1 \oplus a_2 \oplus \cdots \oplus a_d$ (e.g., d = 8)
 - Each register stores $n a_i$'s (i.e., GF(2) elements)
 - Memory $\propto n \cdot d$, Time: $\propto d$ GF(2) mult. (i.e., ANDs)
 - AES bitslice S-box ≈ 32 AND gates (& 83 XORs)

 \Rightarrow Performance gains with large d's (8, 16, 32) @

Security analysis

We analyzed the SNI security of the gadgets
 ≈ composable probing security (Barthe et al. 2016)

Security analysis

- 12
- We analyzed the SNI security of the gadgets
 ≈ composable probing security (Barthe et al. 2016)
- Iterating $\left[(d-1)/3 \right]$ refresh is SNI for d < 12

Security analysis

- We analyzed the SNI security of the gadgets
 ≈ composable probing security (Barthe et al. 2016)
- Iterating $\left[(d-1)/3 \right]$ refresh is SNI for d < 12
- Multiplication is more tricky...

Algorithm	d	(<i>d-</i> 1)-SNI	rand (our alg.)	rand (ISW 2003)
multiplication	3	V	3	3
	<i>d</i> ≥ 4	X	d (d -1)/4	d (d -1)/2
refresh o multiplication	4	V	8	6
	5	V	10	10
	6	٧	18	15
	7	٧	21	21
	8	٧	24	28

Outline

- Introduction / motivation
 - Side-channel attacks and noise
 - Masking and leakage models
- Bounded moment model
 - Masking intuition & BMM definition
 - Probing security \Rightarrow BM security
- Parallel multiplication (& refreshing)
- BM security ⇒ probing security
 - Inner product masking (with "non-mixing" leakages)
 - Continuous security & refreshing gadgets
- Conclusions

Specialized encodings

- Probing security is stronger than BM security
 - (And also stronger than noisy leakage security)
- Is it sometimes "too strong"?
 - i.e., breaks designs that are secure against DPA

- Probing security is stronger than BM security
 - (And also stronger than noisy leakage security)
- Is it sometimes "too strong"?
 - i.e., breaks designs that are secure against DPA
- Example: Boolean encoding (2 shares)

 $y = y_1 \oplus y_2$

- Probing security is stronger than BM security
 - (And also stronger than noisy leakage security)
- Is it sometimes "too strong"?
 - i.e., breaks designs that are secure against DPA
- Example: Boolean encoding (2 shares)

 $y = y_1 \oplus y_2$

• IP masking *in* GF(2⁸) *with "non-mixing" leakages*

Outline

- Introduction / motivation
 - Side-channel attacks and noise
 - Masking and leakage models
- Bounded moment model
 - Masking intuition & BMM definition
 - Probing security \Rightarrow BM security
- Parallel multiplication (& refreshing)
- BM security ⇒ probing security
 - Inner product masking (with "non-mixing" leakages)
 - Continuous security & refreshing gadgets
- Conclusions

• So far we discussed "one-shot" probing attacks

- So far we discussed "one-shot" probing attacks
- Yet, side-channel attacks are usually continuous
 - i.e, accumulate information from multiple executions

- So far we discussed "one-shot" probing attacks
- Yet, side-channel attacks are usually continuous
 - i.e, accumulate information from multiple executions

- Typical issue: refreshing by add a share of 0
 - Frequently used in practice
 - Yet insecure in the continuous probing model
 - What does it mean concretely?
 - i.e., can we (sometimes) use such a refreshing?

Continuous probing attack

• Target: refresh(a) = $a \oplus r \oplus rot(r)$

step 1 $a_1^{(1)}$ $a_2^{(1)}$ $a_3^{(1)}$ $a_4^{(1)}$

Accumulated knowledge: Ø

Continuous probing attack

• Target: refresh(a) = $a \oplus r \oplus rot(r)$

Accumulated knowledge: Ø

Continuous probing attack

• Target: refresh(a) = $a \oplus r \oplus rot(r)$

Accumulated knowledge: $a_1^{(3)} \oplus a_2^{(3)} \oplus a_3^{(3)}$

 \Rightarrow After d iterations, a is learned in full by Adv_{pr}

 \Rightarrow After d iterations, a is learned in full by Adv_{pr}

 Not possible in the BMM. Intuition: adaptation does not help since Adv_{bm} can anyway sum over all shares!

. . .

 \Rightarrow After d iterations, a is learned in full by Adv_{pr}

<u>Impact</u>: refresh(.) can be used to refresh the key of a key homomorphic primitive (⇒ fully linear overheads)

. . .

Outline

- Introduction / motivation
 - Side-channel attacks and noise
 - Masking and leakage models
- Bounded moment model
 - Masking intuition & BMM definition
 - Probing security \Rightarrow BM security
- Parallel multiplication (& refreshing)
- BM security ⇒ probing security
 - Inner product masking (with "non-mixing" leakages)
 - Continuous security & refreshing gadgets
- Conclusions

- 16
- Probing security is relevant to parallel implem.

- Probing security is relevant to parallel implem.
- BMM suggests a principled path to security eval.

- Probing security is relevant to parallel implem.
- BMM suggests a principled path to security eval.

- Parallel implem. are appealing for masking
 - Leverage the memory needed to store shares

- Probing security is relevant to parallel implem.
- BMM suggests a principled path to security eval.

- Parallel implem. are appealing for masking
 - Leverage the memory needed to store shares
- Cont. probing security sometimes "too strong"

THANKS http://perso.uclouvain.be/fstandae/