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* |ntroduction / motivation
e Side-channel attacks and noise



Side-channel attacks 1
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* =~ physical attacks that decreases security
exponentially in the # of measurements



Noise (hardware countermeasures)
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Noise (hardware countermeasures)
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Noise (hardware countermeasures)

* Additive noise = cost X 2 = security X 2
= not a good (crypto) security parameter



* |ntroduction / motivation

* Masking and leakage models



Masking (= noise amplification)

e Example: Boolean encoding

Yy=y1 0 Y20 D Ya-1DVa
*  With Y1 Y2, Yd-2Yd-1 < {O'l}n



Masking (abstract view) 4

* Probing security (Ishai, Sahai, Wagner 2003)

y=y1 Dy, D - Dyag—1Dyq




Masking (abstract view) 4

* Probing security (Ishai, Sahai, Wagner 2003)

y=y1 Dy, D - Dyag—1Dyq

N

* d — 1 probes do not reveal anythingon y




Masking (abstract view) 4

* Probing security (Ishai, Sahai, Wagner 2003)

y=y1 Dy, D - Dyag—1Dyq

I

 But d probes completely reveal y




Masking (concrete view)

yl@yz@ EByd 1 D ya

Ieakage
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(a) serial implementation.

* Bounded information leakage MI(Y;; L)%



Masking (concrete view)
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(a) serial implementation.

Noisy leakage security (Prouff, Rivain 2013)



Masking (concrete view)

Probing security (Ishai, Sahai, Wagner 2003)
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Noisy leakage security (Prouff, Rivain 2013)



Motivation / open questions

1. What happens with parallel implementations?

leakage

For example: one probe reveals the shares’ sum
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(b) parallel implementation.



Motivation / open questions
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2. How to test physical independence? (consolidating)
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(a) serial implementation. (b) parallel implementation.



Motivation / open questions

 W/O directly working in the noisy leakage model



e Bounded moment model
 Masking intuition & BMM definition



Masking statistical intuition

e 2-share/ 1-bit example, serial implementation

L1=y1+n1 1 + E. 1 + @

L, =y, +n, o +t@® 0 | P

(a) Y=0, serial. (b) Y =1, serial.



Masking statistical intuition

e 2-share / 1-bit example, parallel implementation
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(c) Y=0, parallel. (d) Y=1, parallel.



Masking statistical intuition

Definition (informal). An implementation is
secure at order o in the bounded moment
model if all mixed statistical moments of order
up to o of its leakage vectors are independent
of any sensitive variable manipulated




e Bounded moment model

* Probing security = BM security



Abstract reduction (answer to Q1)

* Theorem (informal). A parallel implementation is
secure at order o in the BMM |f its serialization is
secure at order o in the probing model where

* Advy, can (typically) probe 0 = d — 1 wires

 Advy,, can observe any L = ?zl ai* Yi



Abstract reduction 8

* |ntuition: summing the shares (in R) does not
break the independent leakage assumption



Abstract reduction

 Theorem (informal). A parallel implementation is
secure at order o in the BMM |if its serialization is
secure at order o in the probing model where

* Advy, can (typically) probe 0 = d — 1 wires
d

* Advy,, canobserveany L = ;. a; - y;
* [ntuition: summing the shares (in R) does not
break the independent leakage assumption

* Main # between probing and BM security
* Advy,, can sum over all the shares!
e BM security is weaker (moments vs. distributions)



Concrete consequence

* |f physically independent leakages, BM security
extends to actual measurements (e.g., d = 3)
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Concrete consequence (answer to Q2)

* |[f not, leakages are not independent



* Parallel multiplication (& refreshing)



Serial multiplication

ISW 2003: multiplicationc = a X b
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Serial multiplication

 AES S-box (n = 8) implementation
s a=a;Da, D Day(eg.,d=28)
* Each register stores an q; (i.e., a GF(28) element)
e Memory x n-d, Time: x d? GF(28) mult.
 AES S-box = 3 multiplications (& 4 squarings)



Parallel multiplication

Main tweak: interleave & regularize
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Parallel multiplication

 AES S-box (n = 8) implementation
c a=a,Da, - Dayleg.,d=28)
* Each register stores n a;’s (i.e., GF(2) elements)
e Memory X n-d, Time: x d GF(2) mult. (i.e., ANDs)
e AES bitslice S-box = 32 AND gates (& 83 XORs)



Parallel multiplication

* Main tweak: interleave & regularize

ofof: e

refresh

“[2

 AES S-box (n = 8) implementation

s a=a,Da, D - Day(eg.,d=28)

* Each register stores n a;’s (i.e., GF(2) elements)

e Memoryxn-d, Time: < dGF(2) mult. (i.e., ANDs)
 AES bitslice S-box =~ 32 AND gates (& 83 XORs)

= Performance gains with large d’s (8, 16, 32) @



Security analysis

 We analyzed the SNI security of the gadgets
~ composable probing security (Barthe et al. 2016)



Security analysis

» |terating [(d — 1)/3] refresh is SNI ford < 12



Security analysis

 We analyzed the SNI security of the gadgets
~ composable probing security (Barthe et al. 2016)

* [terating [(d — 1)/3] refresh is SNl for d < 12

 Multiplication is more tricky...

. rand rand
Algorithm d (d- 1)-SNI (our alg.) (ISW 2003)
multiplication 3 v 3 3
d >4 X d(d-1)/4 d(d-1)/2

4 ' 8 6

5 ' 10 10

refresh o multiplication 6 Vv 18 15
7 V 21 21

8 V 24 28




 BM security # probing security
* Inner product masking (with “non-mixing” leakages)



Specialized encodings 13

* Probing security is stronger than BM security
 (And also stronger than noisy leakage security)

* Isit sometimes “too strong”?
* j.e., breaks designs that are secure against DPA



Specialized encodings

 Example: Boolean encoding (2 shares)

y =y, Dy, A A




Specialized encodings

* |P masking in GF(28) with “non-mixing” leakages

2
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 Continuous security & refreshing gadgets



Continuous security 14

 So far we discussed “one-shot” probing attacks



Continuous security

* Yet, side-channel attacks are usually continuous

 j.e, accumulate information
from multiple executions |




Continuous security

e Typical issue: refreshing by add a share of O
 Frequently used in practice
* Yetinsecure in the continuous probing model
* What does it mean concretely?
e j.e., can we (sometimes) use such a refreshing?



Continuous probing attack

Target: refresh(a) = a @ r D rot(r)

step 1

oD

Accumulated knowledge: @



Continuous probing attack

* Target: refresh(a) =a @ r D rot(r)
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Continuous probing attack

Target: refresh(a) = a @ r D rot(r)

step 1

oD

Accumulated knowledge: agl)



Continuous probing attack

* Target: refresh(a) =a @ r D rot(r)

step 1 step 2
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agl) T3(2) TZ(Z) agz)
aff) ’r4(2) 7,3(2) aL(LZ)

Accumulated knowledge: agl)



Continuous probing attack

* Target: refresh(a) =a @ r D rot(r)
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Continuous probing attack

* Target: refresh(a) =a @ r D rot(r)

step 1 step 2

R
agl) TZ(Z) rl(z) agz)
agl) TB(Z) TZ(Z) agz)
aff) ’r4(2) 7,3(2) aL(LZ)

Accumulated knowledge: agl)



Continuous probing attack

* Target: refresh(a) =a @ r D rot(r)

step 1 step 2

agl) 7,1(2) r 4(2) agz)
agl) TZ(Z) rl(z) agz)
agl) T3(2) TZ(Z) agz)
aff) ’r4(2) 7,3(2) aL(LZ)

Accumulated knowledge: aiz) D agz)



Continuous probing attack

Target: refresh(a) = a @ r D rot(r)

step 1 step 2 step 3
agl) 7,1(2) T4(2) agz) 7‘1(3) r 4(3)
agl) TZ(Z) rl(z) agz) 7‘2(3) 7ﬂ1(3)
agl) T3(2) TZ(Z) agz) T3(3) 7”2(3)
aff) ’r4(2) 7,3(2) aL(LZ) 7‘4(3) ’r3(3)

Accumulated knowledge: aiz) D agz)



Continuous probing attack

* Target: refresh(a) =a @ r D rot(r)

step 1 step 2 step 3

agl) 7,1(2) T4(2) agz) 7‘1(3) T4(3) a§3)
agl) TZ(Z) T1(2) agz) r2(3) 7‘1(3) ag3)
agl) T3(2) TZ(Z) agz) r3(3) 7”2(3) a§3)
aff) ’r4(2) 7,3(2) aL(LZ) 7‘4(3) ’r3(3) le)

Accumulated knowledge: a§2) D agz)



Continuous probing attack

* Target: refresh(a) =a @ r D rot(r)

step 1 step 2 step 3

agl) rl(z) T4(2) agz) r1(3) T4(3) -
agl) TZ(Z) rl(z) agz) r2(3) 7‘1(3) -
agl) TB(Z) TZ(Z) agz) T3(3) 7”2(3) a§3)
aff) ’r4(2) 7,3(2) aL(LZ) T4(3) ’r3(3) af)

Accumulated knowledge: a§2) D agz)



Continuous probing attack

* Target: refresh(a) =a @ r D rot(r)

step 1 step 2 step 3

agl) 7,1(2) T4(2) agz) 7‘1(3) T4(3) a§3)
agl) TZ(Z) T1(2) agz) r2(3) 7‘1(3) ag?’)
agl) T3(2) TZ(Z) agz) r3(3) 7”2(3) a§3)
aff) ’r4(2) 7,3(2) aL(LZ) 7‘4(3) ’r3(3) le)

Accumulated knowledge: af) D agg) D af)



Continuous probing attack

* Target: refresh(a) =a @ r D rot(r)

step 1 step 2 step 3

agl) 7,1(2) T4(2) agz) 7‘1(3) T4(3) a§3)
agl) TZ(Z) T1(2) agz) r2(3) 7‘1(3) ag?’)
agl) T3(2) TZ(Z) agz) r3(3) 7”2(3) a§3)
aff) ’r4(2) 7,3(2) aL(LZ) 7‘4(3) ’r3(3) le)

= After d iterations, a is learned in full by Adv,,,



Continuous probing attack

* Not possible in the BMM. Intuition: adaptation does
not help since Advy,,, can anyway sum over all shares!



Continuous probing attack

 Impact: refresh(.) can be used to refresh the key of a
key homomorphic primitive (= fully linear overheads)




e Conclusions
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* Probing security is relevant to parallel implem.



Conclusions

e BMM suggests a principled path to security eval.

[DDF14]

probing security >  noisy leakages security
+ noise, L

bounded moment security



Conclusions

 Parallel implem. are appealing for masking
 Leverage the memory needed to store shares



Conclusions 16

* Probing security is relevant to parallel implem.
* BMM suggests a principled path to security eval.
[DDF14]

probing security >  noisy leakages security
+ noise, L

e
S
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bounded moment security

* Parallel implem. are appealing for masking
* Leverage the memory needed to store shares

 Cont. probing security sometimes “too strong”
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