
Improved Test Pattern Generation for
Hardware Trojan Detection using
Genetic Algorithm and Boolean

Satisfiability

Sayandeep Saha, Rajat Subhra Chakraborty
Srinivasa Shashank Nuthakki, Anshul

and Debdeep Mukhopadhyay

Secure Embedded Architecture Laboratory (SEAL)
Indian Institute of Technology, Kharagpur

Kharagpur, India

September 16, 2015

Outline

Introduction
Motivation
Logic Testing Based Trojan Detection
Scopes of Improvement
Proposed New Strategy
Experimental Results
Conclusion

Introduction: Hardware Trojan Horse

Modern Semiconductor industry trends:

Outsourcing of the Fabrication facility.
Procurement of third party intellectual property (3PIP)
cores.

Threats: Malicious tampering called Hardware Trojan
Horses (HTH) [1].

Stealthy in nature.
Bypass conventional design verification and
post-manufacturing tests.
Effect:

Functional failure
Leakage of secret information

Introduction: Hardware Trojan Horse

Modern Semiconductor industry trends:
Outsourcing of the Fabrication facility.

Procurement of third party intellectual property (3PIP)
cores.

Threats: Malicious tampering called Hardware Trojan
Horses (HTH) [1].

Stealthy in nature.
Bypass conventional design verification and
post-manufacturing tests.
Effect:

Functional failure
Leakage of secret information

Introduction: Hardware Trojan Horse

Modern Semiconductor industry trends:
Outsourcing of the Fabrication facility.
Procurement of third party intellectual property (3PIP)
cores.

Threats: Malicious tampering called Hardware Trojan
Horses (HTH) [1].

Stealthy in nature.
Bypass conventional design verification and
post-manufacturing tests.
Effect:

Functional failure
Leakage of secret information

Introduction: Hardware Trojan Horse

Modern Semiconductor industry trends:
Outsourcing of the Fabrication facility.
Procurement of third party intellectual property (3PIP)
cores.

Threats: Malicious tampering called Hardware Trojan
Horses (HTH) [1].

Stealthy in nature.
Bypass conventional design verification and
post-manufacturing tests.
Effect:

Functional failure
Leakage of secret information

Introduction: Hardware Trojan Horse

Modern Semiconductor industry trends:
Outsourcing of the Fabrication facility.
Procurement of third party intellectual property (3PIP)
cores.

Threats: Malicious tampering called Hardware Trojan
Horses (HTH) [1].

Stealthy in nature.

Bypass conventional design verification and
post-manufacturing tests.
Effect:

Functional failure
Leakage of secret information

Introduction: Hardware Trojan Horse

Modern Semiconductor industry trends:
Outsourcing of the Fabrication facility.
Procurement of third party intellectual property (3PIP)
cores.

Threats: Malicious tampering called Hardware Trojan
Horses (HTH) [1].

Stealthy in nature.
Bypass conventional design verification and
post-manufacturing tests.

Effect:

Functional failure
Leakage of secret information

Introduction: Hardware Trojan Horse

Modern Semiconductor industry trends:
Outsourcing of the Fabrication facility.
Procurement of third party intellectual property (3PIP)
cores.

Threats: Malicious tampering called Hardware Trojan
Horses (HTH) [1].

Stealthy in nature.
Bypass conventional design verification and
post-manufacturing tests.
Effect:

Functional failure
Leakage of secret information

Introduction: Hardware Trojan Horse

Modern Semiconductor industry trends:
Outsourcing of the Fabrication facility.
Procurement of third party intellectual property (3PIP)
cores.

Threats: Malicious tampering called Hardware Trojan
Horses (HTH) [1].

Stealthy in nature.
Bypass conventional design verification and
post-manufacturing tests.
Effect:

Functional failure

Leakage of secret information

Introduction: Hardware Trojan Horse

Modern Semiconductor industry trends:
Outsourcing of the Fabrication facility.
Procurement of third party intellectual property (3PIP)
cores.

Threats: Malicious tampering called Hardware Trojan
Horses (HTH) [1].

Stealthy in nature.
Bypass conventional design verification and
post-manufacturing tests.
Effect:

Functional failure
Leakage of secret information

Motivation
Side-channel techniques:

Most widely explored.
Not suitable for extremely small Trojans [2].

DFT techniques:

For run-time/test-time detection and/or prevention.
Suffers from security threats from Trojans itself [3, 4]

Logic testing based techniques:

Does not need design modification.
Only means of detecting extremely small Trojans even with
1-2 gates [5].
May be used to amplify the effectiveness of side-channel
tests [5].

Surprisingly, very few works has been done on Logic
testing based Trojan detection.

Motivation
Side-channel techniques:

Most widely explored.

Not suitable for extremely small Trojans [2].
DFT techniques:

For run-time/test-time detection and/or prevention.
Suffers from security threats from Trojans itself [3, 4]

Logic testing based techniques:

Does not need design modification.
Only means of detecting extremely small Trojans even with
1-2 gates [5].
May be used to amplify the effectiveness of side-channel
tests [5].

Surprisingly, very few works has been done on Logic
testing based Trojan detection.

Motivation
Side-channel techniques:

Most widely explored.
Not suitable for extremely small Trojans [2].

DFT techniques:

For run-time/test-time detection and/or prevention.
Suffers from security threats from Trojans itself [3, 4]

Logic testing based techniques:

Does not need design modification.
Only means of detecting extremely small Trojans even with
1-2 gates [5].
May be used to amplify the effectiveness of side-channel
tests [5].

Surprisingly, very few works has been done on Logic
testing based Trojan detection.

Motivation
Side-channel techniques:

Most widely explored.
Not suitable for extremely small Trojans [2].

DFT techniques:

For run-time/test-time detection and/or prevention.
Suffers from security threats from Trojans itself [3, 4]

Logic testing based techniques:

Does not need design modification.
Only means of detecting extremely small Trojans even with
1-2 gates [5].
May be used to amplify the effectiveness of side-channel
tests [5].

Surprisingly, very few works has been done on Logic
testing based Trojan detection.

Motivation
Side-channel techniques:

Most widely explored.
Not suitable for extremely small Trojans [2].

DFT techniques:
For run-time/test-time detection and/or prevention.

Suffers from security threats from Trojans itself [3, 4]
Logic testing based techniques:

Does not need design modification.
Only means of detecting extremely small Trojans even with
1-2 gates [5].
May be used to amplify the effectiveness of side-channel
tests [5].

Surprisingly, very few works has been done on Logic
testing based Trojan detection.

Motivation
Side-channel techniques:

Most widely explored.
Not suitable for extremely small Trojans [2].

DFT techniques:
For run-time/test-time detection and/or prevention.
Suffers from security threats from Trojans itself [3, 4]

Logic testing based techniques:

Does not need design modification.
Only means of detecting extremely small Trojans even with
1-2 gates [5].
May be used to amplify the effectiveness of side-channel
tests [5].

Surprisingly, very few works has been done on Logic
testing based Trojan detection.

Motivation
Side-channel techniques:

Most widely explored.
Not suitable for extremely small Trojans [2].

DFT techniques:
For run-time/test-time detection and/or prevention.
Suffers from security threats from Trojans itself [3, 4]

Logic testing based techniques:

Does not need design modification.
Only means of detecting extremely small Trojans even with
1-2 gates [5].
May be used to amplify the effectiveness of side-channel
tests [5].

Surprisingly, very few works has been done on Logic
testing based Trojan detection.

Motivation
Side-channel techniques:

Most widely explored.
Not suitable for extremely small Trojans [2].

DFT techniques:
For run-time/test-time detection and/or prevention.
Suffers from security threats from Trojans itself [3, 4]

Logic testing based techniques:
Does not need design modification.

Only means of detecting extremely small Trojans even with
1-2 gates [5].
May be used to amplify the effectiveness of side-channel
tests [5].

Surprisingly, very few works has been done on Logic
testing based Trojan detection.

Motivation
Side-channel techniques:

Most widely explored.
Not suitable for extremely small Trojans [2].

DFT techniques:
For run-time/test-time detection and/or prevention.
Suffers from security threats from Trojans itself [3, 4]

Logic testing based techniques:
Does not need design modification.
Only means of detecting extremely small Trojans even with
1-2 gates [5].

May be used to amplify the effectiveness of side-channel
tests [5].

Surprisingly, very few works has been done on Logic
testing based Trojan detection.

Motivation
Side-channel techniques:

Most widely explored.
Not suitable for extremely small Trojans [2].

DFT techniques:
For run-time/test-time detection and/or prevention.
Suffers from security threats from Trojans itself [3, 4]

Logic testing based techniques:
Does not need design modification.
Only means of detecting extremely small Trojans even with
1-2 gates [5].
May be used to amplify the effectiveness of side-channel
tests [5].

Surprisingly, very few works has been done on Logic
testing based Trojan detection.

Motivation
Side-channel techniques:

Most widely explored.
Not suitable for extremely small Trojans [2].

DFT techniques:
For run-time/test-time detection and/or prevention.
Suffers from security threats from Trojans itself [3, 4]

Logic testing based techniques:
Does not need design modification.
Only means of detecting extremely small Trojans even with
1-2 gates [5].
May be used to amplify the effectiveness of side-channel
tests [5].

Surprisingly, very few works has been done on Logic
testing based Trojan detection.

Logic Testing Based Trojan Detection:
Problem Statement

Generate tests to trigger a Trojan and observe its effect at
the output.

Trojans are triggered by extremely rare logic events inside
the circuit:

Can be achieved by activating some of the low transition
nets simultaneously to there rare logic values
(Simultaneous activation of rare logic conditions (rare
nodes)).

Number of such possible triggers are exponential in the
number of low transition nets.
A candidate trigger may or may not constitute a feasible
trigger.

Logic Testing Based Trojan Detection:
Problem Statement

Generate tests to trigger a Trojan and observe its effect at
the output.
Trojans are triggered by extremely rare logic events inside
the circuit:

Can be achieved by activating some of the low transition
nets simultaneously to there rare logic values
(Simultaneous activation of rare logic conditions (rare
nodes)).

Number of such possible triggers are exponential in the
number of low transition nets.
A candidate trigger may or may not constitute a feasible
trigger.

Logic Testing Based Trojan Detection:
Problem Statement

Generate tests to trigger a Trojan and observe its effect at
the output.
Trojans are triggered by extremely rare logic events inside
the circuit:

Can be achieved by activating some of the low transition
nets simultaneously to there rare logic values
(Simultaneous activation of rare logic conditions (rare
nodes)).

Number of such possible triggers are exponential in the
number of low transition nets.
A candidate trigger may or may not constitute a feasible
trigger.

Logic Testing Based Trojan Detection:
Problem Statement

Generate tests to trigger a Trojan and observe its effect at
the output.
Trojans are triggered by extremely rare logic events inside
the circuit:

Can be achieved by activating some of the low transition
nets simultaneously to there rare logic values
(Simultaneous activation of rare logic conditions (rare
nodes)).

Number of such possible triggers are exponential in the
number of low transition nets.

A candidate trigger may or may not constitute a feasible
trigger.

Logic Testing Based Trojan Detection:
Problem Statement

Generate tests to trigger a Trojan and observe its effect at
the output.
Trojans are triggered by extremely rare logic events inside
the circuit:

Can be achieved by activating some of the low transition
nets simultaneously to there rare logic values
(Simultaneous activation of rare logic conditions (rare
nodes)).

Number of such possible triggers are exponential in the
number of low transition nets.
A candidate trigger may or may not constitute a feasible
trigger.

Logic Testing Based Trojan Detection: Trojan
Models

Trigger inputs A and B: internal rare nodes inside the
circuit.

Sequential Trojan: activated if rare logic condition occurs
k times.

Logic Testing Based Trojan Detection: Trojan
Models

Trigger inputs A and B: internal rare nodes inside the
circuit.
Sequential Trojan: activated if rare logic condition occurs
k times.

Logic Testing Based Trojan Detection:
Previous Works

Chakraborty et.al presented an automatic test pattern
generation (ATPG) scheme called MERO (CHES 2009) [5].

Utilized: Simultaneous activation of rare nodes for
triggering.
Rare nodes are selected based on a “rareness
threshold” (θ).
N-detect ATPG scheme was proposed:

To individually activate a set of rare nodes to their rare
values at least N-times.

Assumption: Multiple individual activation also increases
the probability of simultaneous activation.

Logic Testing Based Trojan Detection:
Previous Works

Chakraborty et.al presented an automatic test pattern
generation (ATPG) scheme called MERO (CHES 2009) [5].
Utilized: Simultaneous activation of rare nodes for
triggering.

Rare nodes are selected based on a “rareness
threshold” (θ).
N-detect ATPG scheme was proposed:

To individually activate a set of rare nodes to their rare
values at least N-times.

Assumption: Multiple individual activation also increases
the probability of simultaneous activation.

Logic Testing Based Trojan Detection:
Previous Works

Chakraborty et.al presented an automatic test pattern
generation (ATPG) scheme called MERO (CHES 2009) [5].
Utilized: Simultaneous activation of rare nodes for
triggering.
Rare nodes are selected based on a “rareness
threshold” (θ).

N-detect ATPG scheme was proposed:

To individually activate a set of rare nodes to their rare
values at least N-times.

Assumption: Multiple individual activation also increases
the probability of simultaneous activation.

Logic Testing Based Trojan Detection:
Previous Works

Chakraborty et.al presented an automatic test pattern
generation (ATPG) scheme called MERO (CHES 2009) [5].
Utilized: Simultaneous activation of rare nodes for
triggering.
Rare nodes are selected based on a “rareness
threshold” (θ).
N-detect ATPG scheme was proposed:

To individually activate a set of rare nodes to their rare
values at least N-times.

Assumption: Multiple individual activation also increases
the probability of simultaneous activation.

Logic Testing Based Trojan Detection:
Previous Works

Chakraborty et.al presented an automatic test pattern
generation (ATPG) scheme called MERO (CHES 2009) [5].
Utilized: Simultaneous activation of rare nodes for
triggering.
Rare nodes are selected based on a “rareness
threshold” (θ).
N-detect ATPG scheme was proposed:

To individually activate a set of rare nodes to their rare
values at least N-times.

Assumption: Multiple individual activation also increases
the probability of simultaneous activation.

Logic Testing Based Trojan Detection:
Previous Works

Chakraborty et.al presented an automatic test pattern
generation (ATPG) scheme called MERO (CHES 2009) [5].
Utilized: Simultaneous activation of rare nodes for
triggering.
Rare nodes are selected based on a “rareness
threshold” (θ).
N-detect ATPG scheme was proposed:

To individually activate a set of rare nodes to their rare
values at least N-times.

Assumption: Multiple individual activation also increases
the probability of simultaneous activation.

Scopes of Improvement

Trojan test set: only “hard-to-trigger” Trojans with
triggering probability (Ptr) below 10−6.

Best coverage achieved near θ = 0.1 for most of the
circuits– best operating point.
Test Coverage of MERO is consistently below 50% for
circuit c7552.

Scopes of Improvement

Trojan test set: only “hard-to-trigger” Trojans with
triggering probability (Ptr) below 10−6.
Best coverage achieved near θ = 0.1 for most of the
circuits– best operating point.

Test Coverage of MERO is consistently below 50% for
circuit c7552.

Scopes of Improvement

Trojan test set: only “hard-to-trigger” Trojans with
triggering probability (Ptr) below 10−6.
Best coverage achieved near θ = 0.1 for most of the
circuits– best operating point.
Test Coverage of MERO is consistently below 50% for
circuit c7552.

Proposed Solutions

Simultaneous activation of rare nodes: in a direct manner.

Replacement of the MERO heuristics with a combined
Genetic algorithm (GA) and boolean satisfiability (SAT)
based scheme.

Refinement of the test set considering the “payload effect”
of Trojans: a fault simulation based approach.

Proposed Solutions

Simultaneous activation of rare nodes: in a direct manner.

Replacement of the MERO heuristics with a combined
Genetic algorithm (GA) and boolean satisfiability (SAT)
based scheme.

Refinement of the test set considering the “payload effect”
of Trojans: a fault simulation based approach.

Proposed Solutions

Simultaneous activation of rare nodes: in a direct manner.

Replacement of the MERO heuristics with a combined
Genetic algorithm (GA) and boolean satisfiability (SAT)
based scheme.

Refinement of the test set considering the “payload effect”
of Trojans: a fault simulation based approach.

Proposed Solutions

Simultaneous activation of rare nodes: in a direct manner.

Replacement of the MERO heuristics with a combined
Genetic algorithm (GA) and boolean satisfiability (SAT)
based scheme.

Refinement of the test set considering the “payload effect”
of Trojans: a fault simulation based approach.

Genetic Algorithm and Boolean Satisfiability
for ATPG

GA in ATPG:

Achieves reasonably good test coverage over the fault list
very quickly.
Inherently parallel, and rapidly explores search space.
Does not guarantee the detection of all possible faults,
especially for those which are hard to detect.

SAT based test generation:

Remarkably useful for hard-to-detect faults.
Targets the faults one by one– incurs higher execution
time for large fault lists.

We combine the “best of both worlds” for GA and SAT.

Genetic Algorithm and Boolean Satisfiability
for ATPG

GA in ATPG:
Achieves reasonably good test coverage over the fault list
very quickly.

Inherently parallel, and rapidly explores search space.
Does not guarantee the detection of all possible faults,
especially for those which are hard to detect.

SAT based test generation:

Remarkably useful for hard-to-detect faults.
Targets the faults one by one– incurs higher execution
time for large fault lists.

We combine the “best of both worlds” for GA and SAT.

Genetic Algorithm and Boolean Satisfiability
for ATPG

GA in ATPG:
Achieves reasonably good test coverage over the fault list
very quickly.
Inherently parallel, and rapidly explores search space.

Does not guarantee the detection of all possible faults,
especially for those which are hard to detect.

SAT based test generation:

Remarkably useful for hard-to-detect faults.
Targets the faults one by one– incurs higher execution
time for large fault lists.

We combine the “best of both worlds” for GA and SAT.

Genetic Algorithm and Boolean Satisfiability
for ATPG

GA in ATPG:
Achieves reasonably good test coverage over the fault list
very quickly.
Inherently parallel, and rapidly explores search space.
Does not guarantee the detection of all possible faults,
especially for those which are hard to detect.

SAT based test generation:

Remarkably useful for hard-to-detect faults.
Targets the faults one by one– incurs higher execution
time for large fault lists.

We combine the “best of both worlds” for GA and SAT.

Genetic Algorithm and Boolean Satisfiability
for ATPG

GA in ATPG:
Achieves reasonably good test coverage over the fault list
very quickly.
Inherently parallel, and rapidly explores search space.
Does not guarantee the detection of all possible faults,
especially for those which are hard to detect.

SAT based test generation:

Remarkably useful for hard-to-detect faults.
Targets the faults one by one– incurs higher execution
time for large fault lists.

We combine the “best of both worlds” for GA and SAT.

Genetic Algorithm and Boolean Satisfiability
for ATPG

GA in ATPG:
Achieves reasonably good test coverage over the fault list
very quickly.
Inherently parallel, and rapidly explores search space.
Does not guarantee the detection of all possible faults,
especially for those which are hard to detect.

SAT based test generation:
Remarkably useful for hard-to-detect faults.

Targets the faults one by one– incurs higher execution
time for large fault lists.

We combine the “best of both worlds” for GA and SAT.

Genetic Algorithm and Boolean Satisfiability
for ATPG

GA in ATPG:
Achieves reasonably good test coverage over the fault list
very quickly.
Inherently parallel, and rapidly explores search space.
Does not guarantee the detection of all possible faults,
especially for those which are hard to detect.

SAT based test generation:
Remarkably useful for hard-to-detect faults.
Targets the faults one by one– incurs higher execution
time for large fault lists.

We combine the “best of both worlds” for GA and SAT.

Genetic Algorithm and Boolean Satisfiability
for ATPG

GA in ATPG:
Achieves reasonably good test coverage over the fault list
very quickly.
Inherently parallel, and rapidly explores search space.
Does not guarantee the detection of all possible faults,
especially for those which are hard to detect.

SAT based test generation:
Remarkably useful for hard-to-detect faults.
Targets the faults one by one– incurs higher execution
time for large fault lists.

We combine the “best of both worlds” for GA and SAT.

Proposed Scheme

Proposed Scheme

Phase I: Genetic Algorithm

Rare nodes are found using a probabilistic analysis as
described in [6].
GA dynamically updates the database with test vectors for
each trigger combination.
Termination: if either 1000 generations has been reached
or a specified #T number of test vectors has been
generated.

Phase I: Genetic Algorithm

Rare nodes are found using a probabilistic analysis as
described in [6].
GA dynamically updates the database with test vectors for
each trigger combination.
Termination: if either 1000 generations has been reached
or a specified #T number of test vectors has been
generated.

Phase I: Genetic Algorithm

Rare nodes are found using a probabilistic analysis as
described in [6].

GA dynamically updates the database with test vectors for
each trigger combination.
Termination: if either 1000 generations has been reached
or a specified #T number of test vectors has been
generated.

Phase I: Genetic Algorithm

Rare nodes are found using a probabilistic analysis as
described in [6].
GA dynamically updates the database with test vectors for
each trigger combination.

Termination: if either 1000 generations has been reached
or a specified #T number of test vectors has been
generated.

Phase I: Genetic Algorithm

Rare nodes are found using a probabilistic analysis as
described in [6].
GA dynamically updates the database with test vectors for
each trigger combination.

Termination: if either 1000 generations has been reached
or a specified #T number of test vectors has been
generated.

Phase I: Genetic Algorithm

Rare nodes are found using a probabilistic analysis as
described in [6].
GA dynamically updates the database with test vectors for
each trigger combination.
Termination: if either 1000 generations has been reached
or a specified #T number of test vectors has been
generated.

Phase I: Genetic Algorithm

How a SAT Instance is Formed?

Phase I: Genetic Algorithm

How a SAT Instance is Formed?

Phase I: Genetic Algorithm

Goal 1
An effort to generate test vectors that would activate the
most number of sampled trigger combinations.

Goal 2
An effort to generate test vectors for hard-to-trigger
combinations.

Phase I: Genetic Algorithm

Goal 1
An effort to generate test vectors that would activate the
most number of sampled trigger combinations.

Goal 2
An effort to generate test vectors for hard-to-trigger
combinations.

Phase I: Genetic Algorithm

Goal 1
An effort to generate test vectors that would activate the
most number of sampled trigger combinations.

Goal 2
An effort to generate test vectors for hard-to-trigger
combinations.

Phase I: Genetic Algorithm

Fitness Function

f (t) = Rcount(t) + w ∗ I(t) (1)

f (t): fitness value of a test vector t .
Rcount(t): the number of rare nodes triggered by the test
vector t .
w : constant scaling factor (> 1).
I(t): relative improvement of the database D due to the
test vector t .

Phase I: Genetic Algorithm

Fitness Function

f (t) = Rcount(t) + w ∗ I(t) (1)

f (t): fitness value of a test vector t .
Rcount(t): the number of rare nodes triggered by the test
vector t .
w : constant scaling factor (> 1).
I(t): relative improvement of the database D due to the
test vector t .

Phase I: Genetic Algorithm

Relative Improvement

I(t) =
n2(s)− n1(s)

n2(s)
(2)

n1(s): number of test patterns in bin s before update
n2(s): number of test patterns in bin s after update.

Phase I: Genetic Algorithm

Relative Improvement

I(t) =
n2(s)− n1(s)

n2(s)
(2)

n1(s): number of test patterns in bin s before update
n2(s): number of test patterns in bin s after update.

Phase I: Genetic Algorithm

Crossover and Mutation

Two-point binary crossover with probability 0.9.
Binary mutation with probability 0.05.
Population size: 200 (combinatorial), 500 (sequential).

Phase I: Genetic Algorithm

Crossover and Mutation
Two-point binary crossover with probability 0.9.

Binary mutation with probability 0.05.
Population size: 200 (combinatorial), 500 (sequential).

Phase I: Genetic Algorithm

Crossover and Mutation
Two-point binary crossover with probability 0.9.
Binary mutation with probability 0.05.

Population size: 200 (combinatorial), 500 (sequential).

Phase I: Genetic Algorithm

Crossover and Mutation
Two-point binary crossover with probability 0.9.
Binary mutation with probability 0.05.
Population size: 200 (combinatorial), 500 (sequential).

Phase I: Genetic Algorithm

Crossover and Mutation
Two-point binary crossover with probability 0.9.
Binary mutation with probability 0.05.
Population size: 200 (combinatorial), 500 (sequential).

Phase II: Solving “Hard-to-Trigger” Patterns
using SAT

SAT Engine

Trojan Database

(D) with tuples

{s,{ti}}, with s∊S{s,φ},where s∊S’

SAT(s)?

Yes

{s,{ti}},where s∊Ssat

Reject

s∊Sunsat No

(2)

(3)

(3)

Is |S’|=0End

Yes

No

(1)

S ′ ⊆ S denotes the set of trigger combinations unresolved
by GA.
Ssat ⊆ S

′
is the set solved by SAT.

Sunsat ⊆ S
′

remains unsolved and gets rejected.

Phase II: Solving “Hard-to-Trigger” Patterns
using SAT

SAT Engine

Trojan Database

(D) with tuples

{s,{ti}}, with s∊S{s,φ},where s∊S’

SAT(s)?

Yes

{s,{ti}},where s∊Ssat

Reject

s∊Sunsat No

(2)

(3)

(3)

Is |S’|=0End

Yes

No

(1)

S ′ ⊆ S denotes the set of trigger combinations unresolved
by GA.
Ssat ⊆ S

′
is the set solved by SAT.

Sunsat ⊆ S
′

remains unsolved and gets rejected.

Phase II: Solving “Hard-to-Trigger” Patterns
using SAT

SAT Engine

Trojan Database

(D) with tuples

{s,{ti}}, with s∊S{s,φ},where s∊S’

SAT(s)?

Yes

{s,{ti}},where s∊Ssat

Reject

s∊Sunsat No

(2)

(3)

(3)

Is |S’|=0End

Yes

No

(1)

S ′ ⊆ S denotes the set of trigger combinations unresolved
by GA.

Ssat ⊆ S
′

is the set solved by SAT.
Sunsat ⊆ S

′
remains unsolved and gets rejected.

Phase II: Solving “Hard-to-Trigger” Patterns
using SAT

SAT Engine

Trojan Database

(D) with tuples

{s,{ti}}, with s∊S{s,φ},where s∊S’

SAT(s)?

Yes

{s,{ti}},where s∊Ssat

Reject

s∊Sunsat No

(2)

(3)

(3)

Is |S’|=0End

Yes

No

(1)

S ′ ⊆ S denotes the set of trigger combinations unresolved
by GA.
Ssat ⊆ S

′
is the set solved by SAT.

Sunsat ⊆ S
′

remains unsolved and gets rejected.

Phase II: Solving “Hard-to-Trigger” Patterns
using SAT

SAT Engine

Trojan Database

(D) with tuples

{s,{ti}}, with s∊S{s,φ},where s∊S’

SAT(s)?

Yes

{s,{ti}},where s∊Ssat

Reject

s∊Sunsat No

(2)

(3)

(3)

Is |S’|=0End

Yes

No

(1)

S ′ ⊆ S denotes the set of trigger combinations unresolved
by GA.
Ssat ⊆ S

′
is the set solved by SAT.

Sunsat ⊆ S
′

remains unsolved and gets rejected.

Phase III: Payload Aware Test Vector
Selection

For a node to be payload:

Necessary condition: topological rank must be higher
than the topologically highest node of the trigger
combination.

Not a sufficient condition.

In general, a successful Trojan triggering event provides no
guarantee regarding its propagation to the primary output
to cause functional failure of the circuit.

Phase III: Payload Aware Test Vector
Selection

For a node to be payload:

Necessary condition: topological rank must be higher
than the topologically highest node of the trigger
combination.

Not a sufficient condition.

In general, a successful Trojan triggering event provides no
guarantee regarding its propagation to the primary output
to cause functional failure of the circuit.

Phase III: Payload Aware Test Vector
Selection

For a node to be payload:
Necessary condition: topological rank must be higher
than the topologically highest node of the trigger
combination.

Not a sufficient condition.

In general, a successful Trojan triggering event provides no
guarantee regarding its propagation to the primary output
to cause functional failure of the circuit.

Phase III: Payload Aware Test Vector
Selection

For a node to be payload:
Necessary condition: topological rank must be higher
than the topologically highest node of the trigger
combination.

Not a sufficient condition.

In general, a successful Trojan triggering event provides no
guarantee regarding its propagation to the primary output
to cause functional failure of the circuit.

Phase III: Payload Aware Test Vector
Selection

For a node to be payload:
Necessary condition: topological rank must be higher
than the topologically highest node of the trigger
combination.

Not a sufficient condition.

In general, a successful Trojan triggering event provides no
guarantee regarding its propagation to the primary output
to cause functional failure of the circuit.

Phase III: Payload Aware Test Vector
Selection

An Example

Trojan is triggered by an input vector 1111.
Payload-1 (Fig. (b)) has no effect on the output.
Payload-2 (Fig. (c)) affects the output.

Phase III: Payload Aware Test Vector
Selection

An Example

Trojan is triggered by an input vector 1111.
Payload-1 (Fig. (b)) has no effect on the output.
Payload-2 (Fig. (c)) affects the output.

Phase III: Payload Aware Test Vector
Selection

An Example

Trojan is triggered by an input vector 1111.
Payload-1 (Fig. (b)) has no effect on the output.
Payload-2 (Fig. (c)) affects the output.

Phase III: Payload Aware Test Vector
Selection

An Example

Trojan is triggered by an input vector 1111.

Payload-1 (Fig. (b)) has no effect on the output.
Payload-2 (Fig. (c)) affects the output.

Phase III: Payload Aware Test Vector
Selection

An Example

Trojan is triggered by an input vector 1111.
Payload-1 (Fig. (b)) has no effect on the output.

Payload-2 (Fig. (c)) affects the output.

Phase III: Payload Aware Test Vector
Selection

An Example

Trojan is triggered by an input vector 1111.
Payload-1 (Fig. (b)) has no effect on the output.
Payload-2 (Fig. (c)) affects the output.

Phase III: Payload Aware Test Vector
Selection

Phase III: Pseudo Test Vector

For each set of test vectors ({ts
i }) corresponding to a

triggering combination (s), we find out the primary input
positions which remains static (logic-0 or logic-1).
Rest of the input positions are marked as “don’t care” (X).
A 3-value logic simulation is performed with this PTV and
values of all internal nodes are noted down (0,1, or X).

Phase III: Pseudo Test Vector

For each set of test vectors ({ts
i }) corresponding to a

triggering combination (s), we find out the primary input
positions which remains static (logic-0 or logic-1).
Rest of the input positions are marked as “don’t care” (X).
A 3-value logic simulation is performed with this PTV and
values of all internal nodes are noted down (0,1, or X).

Phase III: Pseudo Test Vector

For each set of test vectors ({ts
i }) corresponding to a

triggering combination (s), we find out the primary input
positions which remains static (logic-0 or logic-1).

Rest of the input positions are marked as “don’t care” (X).
A 3-value logic simulation is performed with this PTV and
values of all internal nodes are noted down (0,1, or X).

Phase III: Pseudo Test Vector

For each set of test vectors ({ts
i }) corresponding to a

triggering combination (s), we find out the primary input
positions which remains static (logic-0 or logic-1).
Rest of the input positions are marked as “don’t care” (X).

A 3-value logic simulation is performed with this PTV and
values of all internal nodes are noted down (0,1, or X).

Phase III: Pseudo Test Vector

For each set of test vectors ({ts
i }) corresponding to a

triggering combination (s), we find out the primary input
positions which remains static (logic-0 or logic-1).
Rest of the input positions are marked as “don’t care” (X).
A 3-value logic simulation is performed with this PTV and
values of all internal nodes are noted down (0,1, or X).

Phase III: Payload Aware Test Vector
Selection

The Fault list Fs

If the value at that node is 1, consider a stuck-at-zero fault
there.
If the value at that node is 0, consider a stuck-at-one fault
there.
If the value at that node is X, consider a both stuck-at-one
and stuck-at-zero fault at that location.

Phase III: Payload Aware Test Vector
Selection

The Fault list Fs

If the value at that node is 1, consider a stuck-at-zero fault
there.

If the value at that node is 0, consider a stuck-at-one fault
there.
If the value at that node is X, consider a both stuck-at-one
and stuck-at-zero fault at that location.

Phase III: Payload Aware Test Vector
Selection

The Fault list Fs

If the value at that node is 1, consider a stuck-at-zero fault
there.
If the value at that node is 0, consider a stuck-at-one fault
there.

If the value at that node is X, consider a both stuck-at-one
and stuck-at-zero fault at that location.

Phase III: Payload Aware Test Vector
Selection

The Fault list Fs

If the value at that node is 1, consider a stuck-at-zero fault
there.
If the value at that node is 0, consider a stuck-at-one fault
there.
If the value at that node is X, consider a both stuck-at-one
and stuck-at-zero fault at that location.

Phase III: Payload Aware Test Vector
Selection

Experimental Results: Setup

Experimental Results: Setup

|Sθtest | = |S| = 100000 for each θ.
Feasible Trojans were selected from candidate Trojan set
by extensive SAT solving and circuit simulation.
Trojans were ranked according to their triggering
probability and Trojans which are below some specific
triggering threshold (Ptr) were selected. This constitutes
our “hard-to-trigger” Trojan set.
We set Ptr to be 10−6.
The whole scheme was implemented in C++ .
Zchaff [7] SAT solver was used.
Sequential fault simulator HOPE [8] was used for fault
simulation.

Experimental Results: Setup

|Sθtest | = |S| = 100000 for each θ.

Feasible Trojans were selected from candidate Trojan set
by extensive SAT solving and circuit simulation.
Trojans were ranked according to their triggering
probability and Trojans which are below some specific
triggering threshold (Ptr) were selected. This constitutes
our “hard-to-trigger” Trojan set.
We set Ptr to be 10−6.
The whole scheme was implemented in C++ .
Zchaff [7] SAT solver was used.
Sequential fault simulator HOPE [8] was used for fault
simulation.

Experimental Results: Setup

|Sθtest | = |S| = 100000 for each θ.
Feasible Trojans were selected from candidate Trojan set
by extensive SAT solving and circuit simulation.

Trojans were ranked according to their triggering
probability and Trojans which are below some specific
triggering threshold (Ptr) were selected. This constitutes
our “hard-to-trigger” Trojan set.
We set Ptr to be 10−6.
The whole scheme was implemented in C++ .
Zchaff [7] SAT solver was used.
Sequential fault simulator HOPE [8] was used for fault
simulation.

Experimental Results: Setup

|Sθtest | = |S| = 100000 for each θ.
Feasible Trojans were selected from candidate Trojan set
by extensive SAT solving and circuit simulation.
Trojans were ranked according to their triggering
probability and Trojans which are below some specific
triggering threshold (Ptr) were selected. This constitutes
our “hard-to-trigger” Trojan set.

We set Ptr to be 10−6.
The whole scheme was implemented in C++ .
Zchaff [7] SAT solver was used.
Sequential fault simulator HOPE [8] was used for fault
simulation.

Experimental Results: Setup

|Sθtest | = |S| = 100000 for each θ.
Feasible Trojans were selected from candidate Trojan set
by extensive SAT solving and circuit simulation.
Trojans were ranked according to their triggering
probability and Trojans which are below some specific
triggering threshold (Ptr) were selected. This constitutes
our “hard-to-trigger” Trojan set.
We set Ptr to be 10−6.

The whole scheme was implemented in C++ .
Zchaff [7] SAT solver was used.
Sequential fault simulator HOPE [8] was used for fault
simulation.

Experimental Results: Setup

|Sθtest | = |S| = 100000 for each θ.
Feasible Trojans were selected from candidate Trojan set
by extensive SAT solving and circuit simulation.
Trojans were ranked according to their triggering
probability and Trojans which are below some specific
triggering threshold (Ptr) were selected. This constitutes
our “hard-to-trigger” Trojan set.
We set Ptr to be 10−6.
The whole scheme was implemented in C++ .

Zchaff [7] SAT solver was used.
Sequential fault simulator HOPE [8] was used for fault
simulation.

Experimental Results: Setup

|Sθtest | = |S| = 100000 for each θ.
Feasible Trojans were selected from candidate Trojan set
by extensive SAT solving and circuit simulation.
Trojans were ranked according to their triggering
probability and Trojans which are below some specific
triggering threshold (Ptr) were selected. This constitutes
our “hard-to-trigger” Trojan set.
We set Ptr to be 10−6.
The whole scheme was implemented in C++ .
Zchaff [7] SAT solver was used.

Sequential fault simulator HOPE [8] was used for fault
simulation.

Experimental Results: Setup

|Sθtest | = |S| = 100000 for each θ.
Feasible Trojans were selected from candidate Trojan set
by extensive SAT solving and circuit simulation.
Trojans were ranked according to their triggering
probability and Trojans which are below some specific
triggering threshold (Ptr) were selected. This constitutes
our “hard-to-trigger” Trojan set.
We set Ptr to be 10−6.
The whole scheme was implemented in C++ .
Zchaff [7] SAT solver was used.
Sequential fault simulator HOPE [8] was used for fault
simulation.

Experimental Results: circuit c7552

Proposed scheme outperforms MERO to a significant
extent.
The coverage trend is similar to MERO and the best
operating point is 0.1.

Experimental Results: circuit c7552

Proposed scheme outperforms MERO to a significant
extent.
The coverage trend is similar to MERO and the best
operating point is 0.1.

Experimental Results: circuit c7552

Proposed scheme outperforms MERO to a significant
extent.

The coverage trend is similar to MERO and the best
operating point is 0.1.

Experimental Results: circuit c7552

Proposed scheme outperforms MERO to a significant
extent.
The coverage trend is similar to MERO and the best
operating point is 0.1.

Experimental Results on ISCAS Benchmarks

Table: Comparison of the proposed scheme with MERO with respect
to testset length.

Ckt. Gates Testset (before Algo.-3) Testset (after Algo.-3) Testset (MERO) Runtime (sec.)
c880 451 6674 5340 6284 9798.84

c2670 776 10,420 8895 9340 11299.74
c3540 1134 17,284 16,278 15,900 15720.19
c5315 1743 17,022 14,536 15,850 15877.53
c7552 2126 17,400 15,989 16,358 16203.02

s15850 9772 37,384 37,052 36,992 17822.67
s35932 16065 7849 7078 7343 14273.09
s38417 22179 53,700 50,235 52,735 19635.22

Terminating condition of GA was set by the number of test
vectors which MERO generates in is standard setup
(N = 1000).
Sequential circuits were considered in full-scan mode.

Experimental Results on ISCAS Benchmarks

Table: Comparison of the proposed scheme with MERO with respect
to testset length.

Ckt. Gates Testset (before Algo.-3) Testset (after Algo.-3) Testset (MERO) Runtime (sec.)
c880 451 6674 5340 6284 9798.84

c2670 776 10,420 8895 9340 11299.74
c3540 1134 17,284 16,278 15,900 15720.19
c5315 1743 17,022 14,536 15,850 15877.53
c7552 2126 17,400 15,989 16,358 16203.02

s15850 9772 37,384 37,052 36,992 17822.67
s35932 16065 7849 7078 7343 14273.09
s38417 22179 53,700 50,235 52,735 19635.22

Terminating condition of GA was set by the number of test
vectors which MERO generates in is standard setup
(N = 1000).
Sequential circuits were considered in full-scan mode.

Experimental Results on ISCAS Benchmarks

Table: Comparison of the proposed scheme with MERO with respect
to testset length.

Ckt. Gates Testset (before Algo.-3) Testset (after Algo.-3) Testset (MERO) Runtime (sec.)
c880 451 6674 5340 6284 9798.84

c2670 776 10,420 8895 9340 11299.74
c3540 1134 17,284 16,278 15,900 15720.19
c5315 1743 17,022 14,536 15,850 15877.53
c7552 2126 17,400 15,989 16,358 16203.02

s15850 9772 37,384 37,052 36,992 17822.67
s35932 16065 7849 7078 7343 14273.09
s38417 22179 53,700 50,235 52,735 19635.22

Terminating condition of GA was set by the number of test
vectors which MERO generates in is standard setup
(N = 1000).

Sequential circuits were considered in full-scan mode.

Experimental Results on ISCAS Benchmarks

Table: Comparison of the proposed scheme with MERO with respect
to testset length.

Ckt. Gates Testset (before Algo.-3) Testset (after Algo.-3) Testset (MERO) Runtime (sec.)
c880 451 6674 5340 6284 9798.84

c2670 776 10,420 8895 9340 11299.74
c3540 1134 17,284 16,278 15,900 15720.19
c5315 1743 17,022 14,536 15,850 15877.53
c7552 2126 17,400 15,989 16,358 16203.02

s15850 9772 37,384 37,052 36,992 17822.67
s35932 16065 7849 7078 7343 14273.09
s38417 22179 53,700 50,235 52,735 19635.22

Terminating condition of GA was set by the number of test
vectors which MERO generates in is standard setup
(N = 1000).
Sequential circuits were considered in full-scan mode.

Experimental Results on ISCAS Benchmarks

Table: Comparison of trigger and Trojan Coverage among MERO
patterns and patterns generated with the proposed scheme with
θ = 0.1; N = 1000 (for MERO) and for trigger combinations
containing up to four rare nodes.

Ckt. MERO Proposed Scheme
Trigger Coverage Trojan Coverage Trigger Coverage Trojan Coverage

c880 75.92 69.96 96.19 85.70
c2670 62.66 49.51 87.15 75.82
c3540 55.02 23.95 81.55 60.00
c5315 43.50 39.01 85.91 71.13
c7552 45.07 31.90 77.94 69.88

s15850 36.00 18.91 68.18 57.30
s35932 62.49 34.65 81.79 73.52
s38417 21.07 14.41 56.95 38.10

Experimental Results on ISCAS Benchmarks

Table: Coverage comparison between MERO and the proposed
Scheme for sequential Trojans.

Ckt. Trig. Cov. for Proposed Scheme Trig. Cov. for MERO
Trojan State Count Trojan State Count

2 4 2 4
s15850 64.91 45.55 31.70 26.00
s35932 78.97 70.38 58.84 49.59
s38417 48.00 42.17 16.11 8.01

Ckt. Troj. Cov. for Proposed Scheme Troj. Cov. for MERO
Trojan State Count Trojan State Count

2 4 2 4
s15850 46.01 32.59 13.59 8.95
s35932 65.22 59.29 25.07 15.11
s38417 30.52 19.92 9.06 2.58

Conclusion

ATPG for Hardware Trojan detection is an important and
less explored direction of research.

State-of-the-art techniques were not good enough.
Proposed scheme significantly improves the performance
of the ATPG mechanism.
The generated Trojan database can be further used for
Trojan diagnosis.
Test vectors generated by the proposed scheme may also
be utilized to improve the efficiency of side channel
analysis based Trojan detection schemes.

Conclusion

ATPG for Hardware Trojan detection is an important and
less explored direction of research.
State-of-the-art techniques were not good enough.

Proposed scheme significantly improves the performance
of the ATPG mechanism.
The generated Trojan database can be further used for
Trojan diagnosis.
Test vectors generated by the proposed scheme may also
be utilized to improve the efficiency of side channel
analysis based Trojan detection schemes.

Conclusion

ATPG for Hardware Trojan detection is an important and
less explored direction of research.
State-of-the-art techniques were not good enough.
Proposed scheme significantly improves the performance
of the ATPG mechanism.

The generated Trojan database can be further used for
Trojan diagnosis.
Test vectors generated by the proposed scheme may also
be utilized to improve the efficiency of side channel
analysis based Trojan detection schemes.

Conclusion

ATPG for Hardware Trojan detection is an important and
less explored direction of research.
State-of-the-art techniques were not good enough.
Proposed scheme significantly improves the performance
of the ATPG mechanism.
The generated Trojan database can be further used for
Trojan diagnosis.

Test vectors generated by the proposed scheme may also
be utilized to improve the efficiency of side channel
analysis based Trojan detection schemes.

Conclusion

ATPG for Hardware Trojan detection is an important and
less explored direction of research.
State-of-the-art techniques were not good enough.
Proposed scheme significantly improves the performance
of the ATPG mechanism.
The generated Trojan database can be further used for
Trojan diagnosis.
Test vectors generated by the proposed scheme may also
be utilized to improve the efficiency of side channel
analysis based Trojan detection schemes.

References I

DARPA, TRUST in Integrated Circuits (TIC).
[Online]. Available:
http://www.darpa.mil/MTO/solicitations/baa07-24., 2007.

M. Tehranipoor and F. Koushanfar, “A Survey of Hardware
Trojan Taxonomy and Detection,” Proc. of IEEE Design Test
of Computers, vol. 27, no. 1, pp. 10–25, 2010.

J. Rajendran, Y. Pino, O. Sinanoglu, and R. Karri, “Security
analysis of logic obfuscation,” in Proceedings of the 49th
Annual Design Automation Conference, pp. 83–89, ACM,
2012.

Y. Jin and Y. Makris, “Is single-scheme Trojan prevention
sufficient?,” in Computer Design (ICCD), 2011 IEEE 29th
International Conference on, pp. 305–308, IEEE, 2011.

References II

R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and
S. Bhunia, “MERO: A statistical approach for hardware
Trojan detection,” in Cryptographic Hardware and
Embedded Systems-CHES 2009, pp. 396–410, Springer,
2009.

H. Salmani, M. Tehranipoor, and J. Plusquellic, “New
design strategy for improving hardware Trojan detection
and reducing Trojan activation time,” in Proc. of Int.
symposium on HOST, pp. 66–73, 2009.

Z. Fu, Y. Marhajan, and S. Malik, “Zchaff sat solver,” 2004.

References III

H. K. Lee and D. S. Ha, “HOPE: An efficient parallel fault
simulator for synchronous sequential circuits,”
Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 15, no. 9,
pp. 1048–1058, 1996.

Questions?

Thank You...

Backup Slides

Experimental Results on ISCAS Benchmarks

Table: Trigger and Trojan coverage at various stages of the proposed
scheme. at θ = 0.1 for random sample of Trojans upto 4 rare node
triggers (Sample size is 100,000 for combinational circuits and
10,000 for sequential circuits).

Ckt. GA only GA + SAT GA + SAT + Algo. 3
Trig. Cov. Troj. Cov. Trig. Cov. Troj. Cov. Trig. Cov. Troj. Cov.

c880 92.12 83.59 96.19 85.70 96.19 85.70
c2670 81.63 69.27 87.31 75.17 87.15 75.82
c3540 80.58 57.21 82.79 59.07 81.55 60.00
c5315 83.79 64.45 85.11 65.04 85.91 71.13
c7552 73.73 64.05 78.16 68.95 77.94 69.88

s15850 64.91 51.95 70.36 57.30 68.18 57.30
s35932 81.15 71.77 81.90 73.52 81.79 73.52
s38417 55.03 29.33 61.76 36.50 56.95 38.10

Probabilistic Analysis to find out Rare Nodes

