
End-to-end Design of a PUF based Privacy
Preserving Authentication Protocol

Aydin Aysu (Virginia Tech)

Ege Gulcan (Virginia Tech)

Daisuke Moriyama (NICT)

Patrick Schaumont (Virginia Tech)

Moti Yung (Google/Columbia University)
1

2

PUF is attractive in implementation and theory

- Investigate new construction

- Check environmental effect

- Analyze PUF’s data

Implementation

Motivation

3

PUF is attractive in implementation and theory

- Investigate new construction

- Check environmental effect

- Analyze PUF’s data

Implementation Theory

- Provide security model

- Propose PUF-based protocol

Motivation

4

PUF is attractive in implementation and theory

- Investigate new construction

- Check environmental effect

- Analyze PUF’s data

Implementation

- Provide security model

- Propose PUF-based protocol

Development for Realistic Usage

Combine!!!

Motivation

Theory

5

Propose protocol

Program and evaluate

Provide provable security

Theory

Imple.

PUF Protocol Design has a GAP

GAP!

6

Propose protocol

Program and evaluate

Provide provable security

PUF Protocol Design has a GAP

GAP!

Question: How can we implement theoretically secure
(provably secure) protocol?

Question: Can the PUF-based protocol be worked
in a resource-constrained device?

Theory

Imple.

7

Propose protocol

Extract building blocks

Investigate implementation-primitives
for computing elements

Program and evaluate

Provide provable security

Estimate bit length for each variable

This talk

PRF, RNG, MAC,
Fuzzy extractor,…

AES, BCH, HMAC,…

Theory

Imple.

8

Propose protocol

Extract building blocks

Program and evaluate

Provide provable security

Estimate bit length for each variable

First Step

Theory

Imple.

Investigate implementation-primitives
for computing elements

9

Update to

If ,

Server Device

Theoretical Description (core part)…

PUF
PRFs

10
Update stored data to

If ,

Server Device

PUF

Fuzzy extractor

Encrypt

PRF

PUF

PRF

, Accept! Accept!

Stored data 1

RNG

randomness

helper data

RNG

Stored data 2

RNG

(PUF DB, key DB)

Decrypt

Fuzzy extractor

PRF

Key DB

helper data

PUF DB

randomness

RNG

Secure Authentication

For each DB entries (contain all PUFs),

Update DBs to

(Stored data 1 and 2)

11
Update stored data to

If ,

Server Device

PUF

Fuzzy extractor

Encrypt

PRF

PUF

PRF

, Accept! Accept!

Stored data 1

RNG

randomness

helper data

RNG

Stored data 2

RNG

(PUF DB, key DB)

Decrypt

Fuzzy extractor

PRF

Key DB

helper data

PUF DB

randomness

RNG

Secure Authentication

For each DB entries (contain all PUFs),

Update DBs to

PUF is evaluated twice

- First data is used for authentication
- Second data is encrypted and

used for next authentication

(Stored data 1 and 2)

12
Update stored data to

If ,

Server Device

PUF

Fuzzy extractor

Encrypt

PRF

PUF

PRF

, Accept! Accept!

Stored data 1

RNG

randomness

helper data

RNG

Stored data 2

RNG

(PUF DB, key DB)

Decrypt

Fuzzy extractor

PRF

Key DB

helper data

PUF DB

randomness

RNG

Secure Authentication

For each DB entries (contain all PUFs),

Update DBs to

PUF is evaluated twice

- First data is used for authentication
- Second data is encrypted and

used for next authentication

Support mutual authentication

(Stored data 1 and 2)

13
Update stored data to

If ,

Server Device

PUF

Fuzzy extractor

Encrypt

PRF

PUF

PRF

, Accept! Accept!

Stored data 1

RNG

randomness

helper data

RNG

Stored data 2

RNG

(PUF DB, key DB)

Decrypt

Fuzzy extractor

PRF

Key DB

helper data

PUF DB

randomness

RNG

Secure Authentication

For each DB entries (contain all PUFs),

Update DBs to

- No identity in communication
- Server mounts exhaustive search

(Stored data 1 and 2)

Privacy preserving authentication

14
Update stored data to

If ,

Server Device

PUF

Fuzzy extractor

Encrypt

PRF

PUF

PRF

, Accept! Accept!

Stored data 1

RNG

randomness

helper data

RNG

Stored data 2

RNG

(PUF DB, key DB)

Decrypt

Fuzzy extractor

PRF

Key DB

helper data

PUF DB

randomness

RNG

Secure Authentication

For each DB entries (contain all PUFs),

Update DBs to

Privacy preserving authentication

- No identity in communication
- Server mounts exhaustive search

Forward secure authentication
- Stored data is updated

(Stored data 1 and 2)

15

Server Device

Abstract Description

Non-VM Memory

PUF

Protocol

Key/PUF DB

Protocol

RNG

Fuzzy Extractor

PRF

Encrypt

16

Propose protocol

Extract building blocks

Program and evaluate

Provide provable security

Estimate bit length for each variable

Third Step

Theory

Imple.

Investigate implementation-primitives
for computing elements

17

We select SRAM PUF and evaluated with SASEBO-GII
(SRAM PUF is area efficient)

To avoid bias, 2-XORed is performed
8-XORed SRAM data passed

NIST random test
Min-entropy rate: 26%

Noise rate : 10%

PUF & RNG Construction

SRAM PUF part RNG part

x100

18

ECC part: Code-offset with (63,16,23)-BCH code

Original PUF data

16-bit
BCH.Encoderandomness

63-bit

63-bit

Encode

63-bit
BCH.Decode

Decode
Noisy PUF data

63-bitHelper data

Correct noise up to 11-bit in 63-bit

Implement Fuzzy Extractor

Helper data

Original PUF data

(device side)

(server side)

19

4x63-bit (=252-bit) PUF’s data

Min-entropy rate: 26% 128-bit entropy in 8x63-bit PUF data

Remark: 10% noise rate

Correct one block (63-bit): 97.62%

Correct eight blocks (8x63-bit): 82.61%
Need modification

Implement Fuzzy Extractor

ECC part: Code-offset with (63,16,23)-BCH code

20

4x63-bit (=252-bit) PUF’s data

Implement Fuzzy Extractor

ECC part: Code-offset with (63,16,23)-BCH code

Novelty: Apply code-offset for left-rotated PUF’s data

21

Implement Fuzzy Extractor

ECC part: Code-offset with (63,16,23)-BCH code

Correctness is improved (> 1 - 10)

Novelty: Apply code-offset for left-rotated PUF’s data

-6

Security is also analyzed

22

504-bit Input data + 256-bit randomness

Secret key
(seed)

128-bit output data

PRF and this part are performed by same code

Implement Fuzzy Extractor

Randomness extraction part: CBC-MAC based PRF + randomness

We selected SIMON for the encryption algorithm

23

Propose protocol

Extract building blocks

Program and evaluate

Provide provable security

Estimate bit length for each variable

Final Step

Theory

Imple.

Investigate implementation-primitives
for computing elements

24

We provide two versions:

Soft-core mapping MSP430 in FPGA

MSP430 w/ Micro-coded hardware implementation

Architecture Design

• Fit in real MSP430 (8KB)

• Cycle count includes all procedures

– In SW, BCH encoding is heavy

– In HW, write/read from memory is heavy

25

Category
64-bit

SW (MSP430)
128-bit

SW (MSP430)
128-bit

HW
Unit

Text size 6,862 8,104 4,920 Bytes

Time 562,632 1,859,754 240,814 Cycles

Implementation Results

26

Comparison with related works

PUFKY
(CHES 2012)

Slender
(S&P 2012)

Reverse-FE
(FC 2012)

This work

Application Key Gen Protocol Protocol Protocol

Privacy No No No Yes

Security
flaws

No Yes (ePrint
2014/977)

Yes (ePrint
2014/977)

No

Cycle
count

55,310 - - 1,859,754 (SW)
240,814 (HW)

Logic cost 120 Slices 144 LUT,
274 Register

658 LUT,
496 Register

1221 LUT,
442 Register

PUF RO-PUF XOR-Arbiter
PUF

- SRAM PUF

27

Conclusions

• We demonstrated how to bridge theory
and implementation

• Implementing secure protocol requires
many steps

• The proposed protocol can fit
in microcontroller MSP 430: text size < 8KB
(further optimization is still possible)

28

Thank you for your attention!

29

4x63-bit (=252-bit) PUF’s data

Appendix: Process of our code-offset

ECC part: Code-offset with (63,16,23)-BCH code

Novelty: Apply code-offset for left-rotated PUF’s data

Noise < 12bit

Noise >= 12bit

47-bit among 63-bit
has been noiseless

Category
64-bit

SW (MSP430)
128-bit

SW (MSP430)
128-bit

HW
Unit

Text

HW abstraction 1,022 1,022 1,398 Bytes

Communication 496 644 628 Bytes

SIMON 1604 2,440 0 Bytes

BCH encoding 1,214 1,214 0 Bytes

PUF + Fuzzy 562 646 590 Bytes

RNG 396 456 396 Bytes

Protocol 1,568 1,682 1,908 Bytes

Total text 6,862 8,104 4,920 Bytes

Data
Variables 424 656 656 Bytes

Constants 197 197 73 Bytes

Total data 621 853 729 Bytes

30Fit into real MSP430 (8KB memory space)

Appendix: Implementation Cost

Category
64-bit

SW (MSP430)
128-bit

SW (MSP430)
128-bit

HW
Unit

Read stored data 31,356 61,646 61,646 Cycles

RNG (SRAM) 11,552 23,341 22,981 Cycles

SRAM PUF 4,384 9,082 8,741 Cycles

BCH encoding 268,820 485,094

18,597

Cycles

Fuzzy extractor 28,691 205,080 Cycles

First PRF 39,583 299,724 Cycles

Encrypt 44,355 252,829 Cycles

Second PRF 57,601 394,129 Cycles

Write updated data 76,290 128,829 128,849 Cycles

Total cycles 562,632 1,859,754 240,814 Cycles

31

Appendix: Performance details

Expensive part in SW: BCH encoding
Expensive part in HW: read/write data

