Evaluation and Improvement of Generic-Emulating DPA Attacks

Weijia Wang, Yu Yu, Junrong Liu, Zheng Guo, Francois-Xavier Standaert, Dawu Gu, Sen Xu, and Rong Fu

Outline

- **1. Background: generic-emulating DPA**
- 2. Two new generic-emulating distinguishers
- 3. Improvement using cross-validation
- 4. Experimental results

Outline

- **1. Background: generic-emulating DPA**
- 2. Two new generic-emulating distinguishers
- **3. Improvement using cross-validation**
- 4. Experimental Results

Schindler W, Lemke K, Paar C. A stochastic model for differential side channel cryptanalysis. CHES 2005.

- Doget J, Prouff E, Rivain M, et al. Univariate side channel attacks and leakage modeling. Journal of Cryptographic Engineering, 2011.
- Whitnall C, Oswald E, Standaert F X. The Myth of Generic DPA... and the Magic of Learning. CT-RSA 2014.

1.1 Differential Power Analysis (DPA)

Problems of DPA:

- Choice of power model depends on the experiences of attacker
- The impact of power variability is becoming more and more significant, which makes common power models much less respected in practice.

***** Solution:

Generic DPA (e.g. MIA)

1.2 Generic DPA

- Generic DPA use the nominal mapping as power model.
 - We call the function M(·) as nominal mapping if we have:

 ${z \mid M(z) = M(z')} \approx {z \mid L(z) = L(z')}$

- Limitation of generic DPA:
 - It doesn't work when the target function F_k(x) is injective (AES sbox)

1.3 The Power Model using Algebra Normal Form

- Fact: any real valued leakage function can be represented in algebra normal form (ANF).
- For Example:

Let
$$z = (z_1, z_2, z_3)$$
 in GF(2)³

For any leakage function $L(\cdot)$, we have:

1.3 The Power Model using Algebra Normal Form

- Fact: any real valued leakage function can be represented in algebra normal form (ANF).
- For Example:

Let
$$z = (z_1, z_2, z_3)$$
 in GF(2)³

For any leakage function $L(\cdot)$, we have:

terms of degree 1 terms of degree 2 terms of degree 3

Therefore, we can construct the nominal mapping power model using ANF

1.4 Liner Regression(LR)-based DPA

1.4 Liner Regression(LR)-based DPA

1.5 Generic-emulating DPA

 $M_k(Z_{i,k}) = \alpha_0 + \sum_{u \in \mathbb{U}} \alpha_u Z_{i,k}^u$

1.5 Generic-emulating DPA

1.5 Generic-emulating DPA

1.6 Stepwise Linear Regression (SLR)-based DPA

1.6 SLR-based DPA

The coefficients in the leakage function are sparseFormal description:

$$\hat{\boldsymbol{\alpha}}^{SLR} \stackrel{\text{def}}{=} \operatorname{argmin}_{\alpha} \sum_{i=1}^{N} (T_i - M_k(Z_{i,k}))^2$$

subject to
$$\sum_{u \in \mathbb{U}} |\operatorname{sign}(\alpha_u)| \le s$$

Outline

- **1. Background: generic-emulating DPA**
- 2. Two new generic-emulating distinguishers
- **3. Improvement using cross-validation**
- 4. Experimental Results

Motivation

Two drawbacks in SLR-based DPA

- Unstable outcomes in the high-noise regime
 - the insignificant coefficients are discarded, which makes the unstable outcomes
- Less-satisfactory performance especially on real smart cards

2.1 Ridge-based Distinguishers

2.1 Ridge-based Distinguishers

Ridge-based distinguisher shrinks coefficients by explicitly imposing an overall constraint on their size:

$$\hat{\boldsymbol{\alpha}}^{ridge} \stackrel{\text{def}}{=} \operatorname{argmin}_{\alpha} \sum_{i=1}^{N} \left(T_i - M_k(Z_{i,k}) \right)^2$$

subject to $\sum_{u \in \mathbb{U}} \alpha_u^2 \leq s$

2.1 Ridge-based Distinguishers

Ridge-based distinguisher shrinks coefficients by explicitly imposing an overall constraint on their size:

$$\hat{\boldsymbol{\alpha}}^{ridge} \stackrel{\text{def}}{=} \operatorname{argmin}_{\alpha} \sum_{i=1}^{N} \left(T_i - M_k(Z_{i,k}) \right)^2$$

subject to $\sum_{u \in \mathbb{U}} \alpha_u^2 \leq s$

An equivalent formulation:

$$\hat{\boldsymbol{\alpha}}^{ridge} = \underset{\alpha}{\operatorname{argmin}} \left(\sum_{i=1}^{N} \left(T_i - M_k(Z_{i,k}) \right)^2 + \lambda \sum_{u \in U} \alpha_u^2 \right)$$

The optimal solution is given by:

$$\hat{\boldsymbol{\alpha}}^{ridge} = (\boldsymbol{U}_{k}^{\mathsf{T}}\boldsymbol{U}_{k} + \lambda\boldsymbol{I})^{-1}\boldsymbol{U}_{k}^{\mathsf{T}}T$$
where $\boldsymbol{U}_{k} = (Z_{i,k}^{u})_{i \in \{1,2,\dots,N\}, u \in \mathbb{F}_{2}^{m} \setminus \{0\}}$

$$\hat{\boldsymbol{\alpha}}^{LR} = (\boldsymbol{U}_{k}^{\mathsf{T}}\boldsymbol{U}_{k} +)^{-1}\boldsymbol{U}_{k}^{\mathsf{T}}T$$
shrink
$$\hat{\boldsymbol{\alpha}}^{ridge} = (\boldsymbol{U}_{k}^{\mathsf{T}}\boldsymbol{U}_{k} + \lambda\boldsymbol{I})^{-1}\boldsymbol{U}_{k}^{\mathsf{T}}T$$

2.2 How The Coefficients Shrink in Ridge-based Distinguishers

Consistent with leakage functions in practice

2.3 Lasso-based Distinguishers

The lasso-based distinguisher is similar to the ridge-based one excepted for a different constraint:

$$\hat{\boldsymbol{\alpha}}^{lasso} \stackrel{\text{def}}{=} \operatorname{argmin}_{\alpha} \sum_{i=1}^{N} \left(T_i - M_k(Z_{i,k}) \right)^2$$

subject to $\sum_{u \in \mathbb{U}} |\alpha_u| \le s$

Finding the optimal solution for lasso-based distinguishers is essentially a quadratic programming problem

Outline

- **1. Background: generic-emulating DPA**
- 2. Two new generic-emulating distinguishers
- 3. Improvement using cross-validation
- 4. Experimental results

3 Cross-validation

Outline

- **1. Background: generic-emulating DPA**
- 2. Two new generic-emulating distinguishers
- **3. Improvement using cross-validation**
- 4. Experimental results

4.1.1 SLR-based Distinguisher is Not Stable

4.1.2 A Comparison of Various Attacks

► Leakage with degree 8 ► Ridge-based DPA with C-V and lasso-based DPA are best ≻ New genericemulating DPAs perform better than SLR-based One \succ C-V improves the ridge-based

DPA

4.1.2 A Comparison of Various Attacks

 Leakage with degree 4
 The Best DoM becomes better in lower degree leakage

4.1.3 Attacks Against Some Artificial Leakage Function

All low degree terms

 (<4) are discarded.

 Best DoM attack

 behaves poorly

 The generic emulating DPAs are

 not affected.

4.2 Experiments on Smart Cards

- Microscale ASIC implementation
 1st order success rates
- C-V significantly improves the performance of generic-emulating DPAs

4.2 Experiments on Smart Cards

Conclusion

***** Making generic-emulating DPA practicable

- Ridge-based and lasso-based distinguishers → more stable
- Cross-validation → generic-emulating DPAs can be significantly improved

Thank you!