The Simeck Family of Lightweight Block Ciphers

Gangqiang Yang, Bo Zhu, Valentin Suder, Mark D. Aagaard, and Guang Gong

Electrical and Computer Engineering, University of Waterloo

Sept 15, 2015

Yang, Zhu, Suder, Aagaard, Gong

Simeck Family (CHES 2015)

Sept 15, 2015 1 / 25

Simeck's Design Goals

- 2 Design Specifications and Rationales
- Hardware Implementations Results
 - Results Comparison between Simeck and SIMON
 - Security Analysis

ELE NOR

A B K A B K

Simeck's Design Goals

- 2) Design Specifications and Rationales
- Hardware Implementations Results
- Results Comparison between Simeck and SIMON
- 5 Security Analysis
- Conclusions

= nan

Lightweight Cryptography

• Lightweight cryptography is devised to provide suitable, secure, and compact ciphers (less than 2000 GEs) that fit into the resource constrained devices, such as passive RFID tags and wireless sensor network nodes.

RFID tags

Wireless sensor network nodes

- Block ciphers: TEA, XTEA, PRESENT, KATAN, LED, EPCBC, KLEIN, LBlock, Piccolo, Twine, SIMON, and SPECK.
- Stream ciphers: Trivium, Grain, WG (WG-5, WG-7, WG-8).

= nar

A Smaller Block Cipher than SIMON

• SIMON is optimized for hardware and SPECK is optimized for software [Beaulieu *et al.*, 2013].

- How to design a smaller cipher family than SIMON?
 - The registers cannot be changed.
 - We can reduce the areas of only the round function, key schedule, and key constant.

• E > < E</p>

A Smaller Block Cipher than SIMON

• SIMON is optimized for hardware and SPECK is optimized for software [Beaulieu *et al.*, 2013].

- How to design a smaller cipher family than SIMON?
 - The registers cannot be changed.
 - We can reduce the areas of only the round function, key schedule, and key constant.

Image: A matrix

Simeck

= ~ ~ ~

(a) (b) (c) (b)

Simeck: A Family of Lightweight Block Ciphers

- Simeck is designed to have similar security levels as SIMON but with smaller area.
- Simeck is designed by combining the best features of SIMON and SPECK.
 - Round function.
 - Use a modified version of SIMON's round function.
 - Key schedule.
 - Use round function for key schedule, similar to SPECK.
 - Key constant.
 - Use LFSR-based constant for key schedule, similar to SIMON, but simpler.

ELE OQO

・ロン ・日 ・ ・ ヨ ・ ・ ヨ ・

Simeck: A Family of Lightweight Block Ciphers

- Simeck is designed to have similar security levels as SIMON but with smaller area.
- Simeck is designed by combining the best features of SIMON and SPECK.
 - Round function.
 - Use a modified version of SIMON's round function.
 - Key schedule.
 - Use round function for key schedule, similar to SPECK.
 - Key constant.
 - Use LFSR-based constant for key schedule, similar to SIMON, but simpler.
- Simeck has three instances.
 - Simeck32/64, Simeck48/96, Simeck64/128.
 - The number of rounds for Simeck are identical with the corresponding SIMON.

< □ > < □ > < 亘 > < 亘 > < 亘 ≤ の < ○

Simeck's Design Goals

Hardware Implementations Results

Results Comparison between Simeck and SIMON

5 Security Analysis

Conclusions

= nan

Round Function

• *n* is the word size (16, 24, 32).

三日 のへの

n

イロト イヨト イヨト イヨト

-key_i

Round Function in the Parallel Architecture

- The parallel architecture processes 1 round per clock cycle and the datapath is *n*-bit width.
- Different shift numbers do not affect the area in parallel architecture.

Yang, Zhu, Suder, Aagaard, Gong

Simeck Family (CHES 2015)

= nar

Round Function in the Fully Serialized Architecture

- The fully serialized architecture processes 1 bit per clock cycle and the datapath is 1-bit width.
- Different shift numbers affect the area in the partially serialized architecture in hardware.
 - Reduce 1 MUX (multiplexer) for the fully serialized architecure.
 - Simplify logic to select the MUXes.

Simeck Family (CHES 2015)

(a) (b) (c) (b)

Key Schedule in the Parallel Architecture

Simeck

 Similar as the round function, the parallel architecture processes 1 round per clock cycle and the datapath is *n*-bit width.

Yang, Zhu, Suder, Aagaard, Gong

Simeck Family (CHES 2015)

Simplified Key Schedule

• The combinational circuit (dashed box in above) in the key schedule of SIMON and Simeck in the parallel architecture are shown as follows:

SIMON	(2 <i>n</i> +1) XOR + (<i>n</i> -1) XNOR
Simeck	(n + 1) XOR + $(n - 1)$ XNOR + n AND

• In general, one XOR gate is larger than one AND gate. Thus, Simeck's key schedule is smaller than SIMON.

Yang, Zhu, Suder, Aagaard, Gong

(D) (A) (A) (A)

Simplified Key Constant

• The primitive polynomials for the LFSRs to generate the key constants for Simeck and SIMON.

	Simeck	SIMON
32/64	$X^{5} + X^{2} + 1$	$X^{5} + X^{4} + X^{2} + X + 1$
48/96	$X^{5} + X^{2} + 1$	$X^5 + X^3 + X^2 + X + 1$
64/128	$X^{6} + X + 1$	$X^5 + X^3 + X^2 + X + 1$

• Simeck's are all 2 XOR gates (4 GEs) less than the ones used in SIMON.

ELE NOR

Key Schedule in the Fully Serialized Architecture

Simeck

- Similar as the round function, the fully serialized architecture processes 1 bit per clock cycle and the datapath is 1-bit width.
- Different shift numbers affect the area in the fully serialized architecture, as round function does.
 - Reduce 1 MUX.
 - Simplify logic to select the MUXes.
- The combinational circuit (dashed box) is also decreased.

- Simeck's Design Goals
- Design Specifications and Rationales
- Hardware Implementations Results
 - Results Comparison between Simeck and SIMON
 - 5 Security Analysis
 - Conclusions

ELE NOR

Our Implementation Results of Simeck32/64, 48/96, 64/128 in 130nm

	Partial	CMOS 130nm							
Simook	Failiai	Area (GEs)		Max	Throughput	Total Power	Total Power		
Sineck	corial	Before P&B	Aftor P&B	Frequency	@100 KHz	@100 KHz	@2 MHz		
	Serial	Delore I all	Aller I an	(MHz)	(Kbps)	(μW)	(μW)		
	1-bit	505*	549*	292	5.6	0.417	8.3		
	2-bit	510 [†]	555 [†]	288	11.1	0.431	8.5		
Simeck32/64	4-bit	533 [†]	579 [†]	312	22.2	0.463	9.2		
	8-bit	591 [†]	642 [†]	289	44.4	0.523	10.4		
	16-bit	695*	756*	526	88.9	0.606	11.9		
	1-bit	715†	778†	299	5.0	0.576	11.4		
	2-bit	722 [†]	785 [†]	294	10.0	0.593	11.8		
Simock/18/06	3-bit	731 [†]	794 [†]	268	15.0	0.611	12.1		
SIIIECK40/90	4-bit	748 [†]	813 [†]	284	20.0	0.628	12.5		
	6-bit	770†	837 [†]	287	30.0	0.651	12.9		
	8-bit	801†	871 [†]	284	40.0	0.688	13.6		
	12-bit	858†	933 [†]	283	60.0	0.742	14.7		
	24-bit	1027*	1117*	512	120.0	0.875	17.3		
	1-bit	924*	1005*	288	4.2	0.754	14.9		
	2-bit	933 [†]	1015 [†]	303	8.3	0.778	15.4		
Simeck64/128	4-bit	958†	1041†	271	16.7	0.803	15.9		
	8-bit	1013†	1101 [†]	280	33.3	0.834	16.6		
	16-bit	1132†	1231†	301	66.7	0.977	19.4		
	32-bit	1365*	1484*	512	133.3	1.162	23.0		

Area obtained by using synthesis option compile ultra only.

[†] Area obtained by using synthesis option compile ultra and clock gating.

ELE NOR

Our Implementation Results of SIMON32/64, 48/96, 64/128 in 130nm

	Partial	CMOS 130nm								
SIMON	Failiai	Area (GEs)			Max	Throughput	Total Power	Total Power		
SIMON	aarial	Defere DOD	After D&D	NSA	Frequency	@100 KHz	@100 KHz	@2 MHz		
	Serial	Delote I all	Allerian	Before P&R	(MHz)	(Kbps)	(μW)	(μW)		
	1-bit	517 [†]	562†	523	331	5.6	0.421	8.3		
	2-bit	532*	578*	535	306	11.1	0.439	8.7		
SIMON32/64	4-bit	563 [†]	612 [†]	566	283	22.2	0.479	9.5		
	8-bit	623*	677*	627	367	44.4	0.540	10.7		
	16-bit	715*	778*	722	456	88.9	0.645	12.8		
	1-bit	733 [†]	796 [†]	739	258	5.0	0.579	11.5		
	2-bit	745 [†]	810 [†]	750	289	10.0	0.601	11.9		
SIMON/48/96	3-bit	756 [†]	822 [†]	763	291	15.0	0.615	12.2		
01101010-0750	4-bit	778 [†]	846†	781	287	20.0	0.642	12.7		
	6-bit	800 [†]	869 [†]	804	289	30.0	0.670	13.3		
	8-bit	833 [†]	905†	839	238	40.0	0.706	13.9		
	12-bit	895 [†]	973 [†]	898	307	60.0	0.777	15.4		
	24-bit	1055*	1147*	1062	467	120.0	0.929	18.4		
	1-bit	944 [†]	1026 [†]	958	225	4.2	0.762	15.1		
	2-bit	955 [†]	1038 [†]	968	244	8.3	0.780	15.4		
SIMON64/128	4-bit	988 [†]	1074 [†]	1000	290	16.7	0.818	16.2		
	8-bit	1043 [†]	1134 [†]	1057	296	33.3	0.866	17.2		
	16-bit	1174 [†]	1276 [†]	1185	293	66.7	1.024	20.3		
	32-bit	1403*	1524*	1417	465	133.3	1.239	24.6		

Area obtained by using synthesis option compile ultra only.

[†] Area obtained by using synthesis option compile ultra and clock gating.

ELE NOR

- Simeck's Design Goals
- Design Specifications and Rationales
- Hardware Implementations Results
- Results Comparison between Simeck and SIMON
- Security Analysis

Conclusions

ELE NOR

Area (before the Place and Route) Comparisons in CMOS 130nm

Yang, Zhu, Suder, Aagaard, Gong

ヘロト ヘヨト ヘヨト ヘヨ

Area Comparisons between Simeck32/64 and SIMON32/64

Breakdown of the Results (before the Place and Route) in CMOS 130nm

Components			Parallel (G	Es)	Fully Serialized (GEs)		
Componer	115	Simeck	SIMON*	Difference	Simeck	SIMON*	Difference
Control		31	35	4	71	75	4
	Round (comb)	112	112	0	7	7	0
Datapath	Key (comb)	80	96	16	5	8	3
	Regs + MUXes	474	474	0	434	443	9
	Compile simple [†]	697	717	20	517	533	16
Totals	Compile ultra [†]	695	717	-	505	520	-
	Compile ultra + clock gating [†]	695	715	-	506	517	-

Our own SIMON results.

Synthesis options.

ELE NOR

Results Summary

- Fully serialized architecture.
 - The round function, key schedule and key constant modules of SIMON32/64 account for only 6.4% of the total area.
 - Simeck32/64 reduces this by 46%, which leads to 2.3% smaller total area in comparison to our implementations of SIMON32/64 and 3.4% smaller than the original results in 130nm.
 - Similarly, Simeck48/96, Simeck64/128 are 3.3%, 3.5% smaller than the original results in 130nm.
- Parallel architecture.
 - Simeck32/64, 48/96, 64/128 are 3.7%, 3.3%, 3.7% respectively smaller than the original results in 130nm.

< □ > < □ > < 亘 > < 亘 > < 亘 ≤ の < ○

- Simeck's Design Goals
- Design Specifications and Rationales
- 3 Hardware Implementations Results
- Results Comparison between Simeck and SIMON

Security Analysis

Conclusions

= nan

Security Analysis

- Changing the shift numbers of the round function influences the security [Kölbl et al., CRYPTO 15].
 - Linear and differential diffusion.
- We made a trade-off between security and area for Simeck.
- Simeck benefits from SIMON/SPECK's security analysis due to the similarity between SIMON/SPECK and Simeck [Kölbl and Roy, eprint 2015/706], [Bagheri, eprint 2015/716].
- Security analysis summary.

Ciphor		SIMO	DN*	Simeck			
Cipitei	attacke	d round	s/total rounds	attacked rounds/total rounds			
32/64	23/32	72%	(linear hull)	20/32	62.5%	(impossible differential)	
48/96	25/36	69%	(linear hull)	26/36	72%	(differential)	
64/128	31/44	70%	(linear hull)	33/44	75%	(differential)	

[Beaulieu et al., eprint 2015/585].

< □ > < □ > < 亘 > < 亘 > < 亘 ≤ の < ○

- Simeck's Design Goals
- Design Specifications and Rationales
- 3 Hardware Implementations Results
- Results Comparison between Simeck and SIMON
- Security Analysis

= 200

Conclusions

- We have presented Simeck: a new family of lightweight block ciphers.
- We have provided an extensive exploration for different hardware architectures in order to make a balance between area, throughput, and power consumption for SIMON and Simeck in both CMOS 130nm and 65nm ASICs.
- We have shown that it is possible to design a smaller cipher than SIMON in terms of area and power consumption.
- Simeck is slightly more vulnerable than SIMON to reduced round attacks, but still has sufficient margin for real-world applications.

Appendix I: Our Implementation Results of Simeck32/64, 48/96, 64/128 in 65nm

	Partial	CMOS 65nm							
Simock	i aitiai	Area (GEs)	Max	Throughput	Total Power	Total Power		
Sineck	Sorial	Before P&B	After P&B	Frequency	@100 KHz	@100 KHz	@2 MHz		
	Ochai	Delore Fart	Alter I di i	(MHz)	(Kbps)	(μW)	(μW)		
	1-bit	454*	488*	1754	5.6	1.292	5.5		
	2-bit	465 [†]	500 [†]	1428	11.1	1.311	5.6		
Simeck32/64	4-bit	494†	531 [†]	1388	22.2	1.376	5.9		
	8-bit	550*	592*	1250	44.4	1.512	6.4		
	16-bit	644*	692*	1428	88.9	1.716	6.8		
	1-bit	645†	693 [†]	1562	5.0	1.805	7.8		
	2-bit	656 [†]	706 [†]	1538	10.0	1.825	8.0		
Simock/18/96	3-bit	663 [†]	712 [†]	1282	15.0	1.857	8.4		
SIIIECK40/30	4-bit	686 [†]	738 [†]	1333	20.0	1.886	8.2		
	6-bit	701†	753 [†]	1282	30.0	1.919	8.4		
	8-bit	732†	787 [†]	1388	40.0	2.009	8.8		
	12-bit	794*	854*	1219	60.0	2.212	9.3		
	24-bit	951*	1022*	2325	120.0	2.44	9.6		
	1-bit	828*	891*	1369	4.2	2.304	10.2		
	2-bit	838†	901 [†]	1408	8.3	2.325	10.3		
Simeck64/128	4-bit	869 [†]	935 [†]	1098	16.7	2.372	10.5		
	8-bit	918 [†]	987 [†]	1190	33.3	2.492	10.9		
	16-bit	1042*	1121*	1086	66.7	2.869	12.3		
	32-bit	1263*	1358*	1282	133.3	3.316	13.1		

Area obtained by using synthesis option compile ultra only.

[†] Area obtained by using synthesis option compile ultra and clock gating.

▲□▶▲冊▶▲≣▶▲≣▶ 週刊 のQ@

Appendix II: Our Implementation Results of SIMON32/64, 48/96, 64/128 in 65nm

	Partial	CMOS 65nm							
SIMON	1 aitiai	Area (GEs)		Max	Throughput	Total Power	Total Power		
Olimon	Sorial	Before P&B	Boforo P&B Aftor P&B		@100 KHz	@100 KHz	@2 MHz		
	Ocha	Delore Fart	Alter I dit	(MHz)	(Kbps)	(μW)	(μW)		
	1-bit	466*	501*	1428	5.6	1.311	5.6		
	2-bit	476*	512*	1562	11.1	1.331	5.7		
SIMON32/64	4-bit	506*	544*	1408	22.2	1.381	5.9		
	8-bit	570*	613*	1075	44.4	1.585	6.8		
	16-bit	666*	716*	2222	88.9	1.751	6.8		
	1-bit	661 [†]	711 [†]	1204	5.0	1.812	7.9		
	2-bit	670 [†]	720 [†]	1136	10.0	1.889	9.5		
SIMON48/96	3-bit	682 [†]	733 [†]	1086	15.0	1.86	8.1		
011010140/00	4-bit	699 [†]	752 [†]	1041	20.0	1.915	8.3		
	6-bit	724 [†]	779 [†]	1369	30.0	1.962	8.5		
	8-bit	757 [†]	814 [†]	1282	40.0	2.122	9.0		
	12-bit	819*	881*	1176	60.0	2.305	9.7		
	24-bit	982*	1056*	2222	120.0	2.542	9.9		
	1-bit	845 [†]	908 [†]	1282	4.2	2.336	10.2		
	2-bit	858 [†]	922 [†]	1265	8.3	2.366	10.4		
SIMON64/128	4-bit	887 [†]	954 [†]	1250	16.7	2.423	10.6		
	8-bit	944†	1015 [†]	1265	33.3	2.577	11.2		
	16-bit	1076*	1156*	1176	66.7	3.068	12.8		
	32-bit	1305*	1403*	1694	133.3	3.398	13.4		

Area obtained by using synthesis option compile ultra only.

[†] Area obtained by using synthesis option compile ultra and clock gating.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ 豆目 のへで

Area (before the Place and Route) Comparisons in CMOS 65nm

イロン イヨン イヨン イヨ