Practical Key Recovery for Discrete-Logarithm Based Authentication Schemes from Random Nonce Bits

Damien Vergnaud

École normale supérieure

CHES September, 15th 2015

(with Aurélie Bauer)

< 回 > < 回 > < 回 >

Contents

- DL-based Identification Schemes
- Cryptanalysis of DL-based Authentication Schemes

First attack: Exact Partial Knowledge of Nonces

- Key Recovery with Two Signatures
- (Key Recovery with More Signatures
- Coding-Theoretic Viewpoint

3 Second Attack: Correcting Errors in Nonces

Identification Schemes

- enables a prover to identify itself to a verifier
- Adversary goal: impersonation
 - playing the role of Alice but denied the secret key,
 - it should have negligible probability of making Bob accept.
 - passive attacks / active attacks

4 D N 4 B N 4 B N 4 B

 $\mathbb{G}=\langle g
angle$ a group of prime order q

Prover *P* proves to verifier *V* that it knows the discrete log *x* of a public group element $y = g^x$.

不得る 不良る 不良る

 $\mathbb{G}=\langle g
angle$ a group of prime order q

Prover *P* proves to verifier *V* that it knows the discrete log *x* of a public group element $y = g^x$.

4 **A** N A **B** N A **B** N

 $\mathbb{G}=\langle g
angle$ a group of prime order q

Prover *P* proves to verifier *V* that it knows the discrete log *x* of a public group element $y = g^x$.

4 **A** N A **B** N A **B** N

 $\mathbb{G}=\langle g
angle$ a group of prime order q

Prover *P* proves to verifier *V* that it knows the discrete log *x* of a public group element $y = g^x$.

- A TE N - A TE N

< 🗇 🕨

 $\mathbb{G}=\langle g
angle$ a group of prime order q

Prover *P* proves to verifier *V* that it knows the discrete log *x* of a public group element $y = g^x$.

 $\mathbb{G}=\langle g
angle$ a group of prime order q

Prover *P* proves to verifier *V* that it knows the discrete log *x* of a public group element $y = g^x$.

4 **A** N A **B** N A **B** N

 $\mathbb{G}=\langle g
angle$ a group of prime order q

Prover *P* proves to verifier *V* that it knows the discrete log *x* of a public group element $y = g^x$.

 $\mathbb{G}=\langle g
angle$ a group of prime order q

Prover *P* proves to verifier *V* that it knows the discrete log *x* of a public group element $y = g^x$.

 $\mathbb{G}=\langle g
angle$ a group of prime order q

Prover *P* proves to verifier *V* that it knows the discrete log *x* of a public group element $y = g^x$.

GPS Identification Scheme

- proposed by Girault in 1991
- formally analyzed by Poupard, and Stern in 1998
- based on Schnorr's identification scheme
- Leaves modular reduction in response-calculation step
 - save computation time
 - allows fast on-the-fly authentication (use of coupons)
- ~> signatures using Fiat-Shamir transform

GPS Identification Scheme

$\mathbb{G}=\langle g angle$ a group

Prover *P* proves to verifier *V* that it knows the discrete log *x* of a public group element $y = g^x$.

Parameters (128-bit security level): (S, R, C) = (256, 512, 128)

Key Recovery from Random Nonce Bits

Discrete logarithm computation of x = log_g(y) → impersonation

• Knowledge of $r = \log_g(Z)$ \rightsquigarrow Key recovery: $s = r + cx \Rightarrow x = (s - r)/c \rightsquigarrow$ impersonation

• This knowledge may be due to

- a weak random number generator
- a timing attack
- a probing attack

▶ ...

Discrete logarithm computation of x = log_g(y) → impersonation

- Knowledge of $r = \log_g(Z)$ \rightsquigarrow Key recovery: $s = r + cx \Rightarrow x = (s - r)/c \rightsquigarrow$ impersonation
- This knowledge may be due to
 - a weak random number generator
 - a timing attack
 - a probing attack

▶ ...

Discrete logarithm computation of x = log_g(y) → impersonation

- Knowledge of $r = \log_g(Z)$ \rightsquigarrow Key recovery: $s = r + cx \Rightarrow x = (s - r)/c \rightsquigarrow$ impersonation
- This knowledge may be due to
 - a weak random number generator
 - a timing attack
 - a probing attack
 - ▶ ...

• Kuwakado, Tanaka (1999):

half of r's LSB leaked for two identification/signatures

• Howgrave-Graham, Smart, Nguyen, Shparlinski (2001-2002): fraction of *r*'s consecutive bits for several identification/signatures

• Our work:

fraction of *r*'s bits for several identification/signatures not necessarily consecutive

• Kuwakado, Tanaka (1999):

half of r's LSB leaked for two identification/signatures

 Howgrave-Graham, Smart, Nguyen, Shparlinski (2001-2002): fraction of r's consecutive bits for several identification/signatures

• Our work:

fraction of *r*'s bits for several identification/signatures not necessarily consecutive

• Kuwakado, Tanaka (1999):

half of r's LSB leaked for two identification/signatures

 Howgrave-Graham, Smart, Nguyen, Shparlinski (2001-2002): fraction of r's consecutive bits for several identification/signatures

• Our work:

fraction of *r*'s bits for several identification/signatures not necessarily consecutive

Our Work

reconstructing private keys given a random fraction of nonce bits

- elementary and does not make use of the lattice techniques
- similar to reconstruction of RSA secret key (Heninger et al. Crypto'09 + Crypto'10)

specialized to the case where the value *r* + *cx* is known over ℤ

- GPS identification under passive attacks
- GPS signature (Fiat-Shamir heuristic)
- Schnorr identification under active attacks (small challenge)
- analysis of the algorithm's runtime behavior
- algorithm implemented (extensive experiments using it)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General Idea – Two Signatures

$$r_1 + c_1 \mathbf{X} = s_1$$
$$r_2 + c_2 \mathbf{X} = s_2$$

GOAL: reconstruct bits of nonces starting at the LSB.

- APPROACH (odd c₁ and c₂)
 - ▶ 4 choices for each pair of bits $(r_1[i], r_2[i]) \rightsquigarrow \#$ Search space: 2^{2R}
 - reduces to 2 as the relation

$$c_2r_1 - c_1r_2 = c_2s_1 - c_1s_2 = C$$

gives

 $r_1[i] + r_2[i] = (C - c_2 r_1[0..i - 1] - c_1 r_2[0..i - 1])[i] \mod 2$

 \rightarrow # Search space: 2^{*R*} (same as exhaustive search!)

IDEA: Search tree can be pruned if we know some bits of r₁, r₂

General Idea – Two Signatures

$$r_1 + c_1 \mathbf{X} = s_1$$
$$r_2 + c_2 \mathbf{X} = s_2$$

- GOAL: reconstruct bits of nonces starting at the LSB.
- APPROACH (odd c₁ and c₂)
 - ▶ 4 choices for each pair of bits $(r_1[i], r_2[i]) \rightsquigarrow \#$ Search space: 2^{2R}
 - reduces to 2 as the relation

$$c_2 r_1 - c_1 r_2 = c_2 s_1 - c_1 s_2 = C$$

gives

 $r_1[i] + r_2[i] = (C - c_2 r_1[0..i - 1] - c_1 r_2[0..i - 1])[i] \mod 2$

 \rightsquigarrow # Search space: 2^{*R*} (same as exhaustive search!)

IDEA: Search tree can be pruned if we know some bits of r₁, r₂

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

General Idea – Two Signatures

$$r_1 + c_1 \mathbf{X} = s_1$$
$$r_2 + c_2 \mathbf{X} = s_2$$

- GOAL: reconstruct bits of nonces starting at the LSB.
- APPROACH (odd c₁ and c₂)
 - ▶ 4 choices for each pair of bits $(r_1[i], r_2[i]) \rightsquigarrow \#$ Search space: 2^{2R}
 - reduces to 2 as the relation

$$c_2 r_1 - c_1 r_2 = c_2 s_1 - c_1 s_2 = C$$

gives

 $r_1[i] + r_2[i] = (C - c_2 r_1[0..i - 1] - c_1 r_2[0..i - 1])[i] \mod 2$

 \rightsquigarrow # Search space: 2^{*R*} (same as exhaustive search!)

IDEA: Search tree can be pruned if we know some bits of r₁, r₂

A (10) A (10) A (10)

$$c_{1} = 9, s_{1} = 147$$

$$c_{2} = 15, s_{2} = 239$$

$$C = 54$$

$$r_{1} = 1???, r_{1} = ??10$$

$$c_{2}r_{1} - c_{1}r_{2} = C$$

September, 15th 2015 11 / 20

æ

イロト イヨト イヨト イヨト

$$c_{1} = 9, s_{1} = 147$$

$$c_{2} = 15, s_{2} = 239$$

$$C = 54$$

$$r_{1} = 1???, r_{1} = ??10$$

$$c_{2}r_{1} - c_{1}r_{2} = C$$

æ

September, 15th 2015

э

11/20

September, 15th 2015

э

11/20

September, 15th 2015

11/20

э

Damien Vergnaud (ENS)

Key Recovery from Random Nonce Bits

September, 15th 2015

э

э

Branching Analysis – Two Signatures

- *r*₁[*i*] or *r*₂[*i*] is known
 → the equation fixes the other bit.
- r₁[i] and r₂[i] known
 → the equation is either satisfied or not.

Assumption: δ -fraction of r_1 and r_2 bits known

- $\#\{r_1[i], r_2[i] \text{ known}\} = 0: 2 \text{ Branches, Prob} = (1 \delta)^2$
- $\#\{r_1[i], r_2[i] \text{ known}\} = 1$: 1 Branch , Prob = $2\delta(1 \delta)$
- $\#\{r_1[i], r_2[i] \text{ known}\} = 2$: γ Branch , Prob = δ^2 for $0 < \gamma < 1$

Expected number of branches from each node:

$$2 \cdot (1 - \delta^2) + 1 \cdot 2\delta(1 - \delta) + \gamma \cdot \delta^2 = 2 - 2\delta + \gamma \delta^2$$

< 6 b

Branching Analysis – Two Signatures

- r₁[i] or r₂[i] is known
 → the equation fixes the other bit.
- r₁[i] and r₂[i] known
 → the equation is either satisfied or not.

Assumption: δ -fraction of r_1 and r_2 bits known

- $\#\{r_1[i], r_2[i] \text{ known}\} = 0: 2 \text{ Branches, Prob} = (1 \delta)^2$
- $\#\{r_1[i], r_2[i] \text{ known}\} = 1$: 1 Branch , Prob = $2\delta(1 \delta)$
- $\#\{r_1[i], r_2[i] \text{ known}\} = 2$: γ Branch , Prob = δ^2 for $0 < \gamma < 1$

Expected number of branches from each node:

$$2 \cdot (1 - \delta^2) + 1 \cdot 2\delta(1 - \delta) + \gamma \cdot \delta^2 = 2 - 2\delta + \gamma \delta^2$$

Branching Analysis – Two Signatures

- r₁[i] or r₂[i] is known
 → the equation fixes the other bit.
- r₁[i] and r₂[i] known
 → the equation is either satisfied or not.

Assumption: δ -fraction of r_1 and r_2 bits known

- $\#\{r_1[i], r_2[i] \text{ known}\} = 0: 2 \text{ Branches, Prob} = (1 \delta)^2$
- $\#\{r_1[i], r_2[i] \text{ known}\} = 1$: 1 Branch , Prob = $2\delta(1 \delta)$
- $\#\{r_1[i], r_2[i] \text{ known}\} = 2: \gamma \text{ Branch }, \text{ Prob} = \delta^2 \text{ for } 0 < \gamma < 1$

Expected number of branches from each node:

$$2 \cdot (1 - \delta^2) + 1 \cdot 2\delta(1 - \delta) + \gamma \cdot \delta^2 = 2 - 2\delta + \gamma \delta^2$$

- A TE N - A TE N

4 A >

Branching Analysis (simplified) – Two Signatures

Growth factor of the Search Tree: $2 - 2\delta + \gamma \delta^2$

Polynomial time attack ?
 → Keep the growth factor ≃ 1 to restrict growth.

$$\delta = (1 - \sqrt{1 - \gamma})/\gamma$$

• Experimental observation: $\gamma \simeq 1/2$ (open problem)

$$\delta \simeq 2 - \sqrt{2} \simeq 0,5857$$

For $\delta > 2 - \sqrt{2}$, the algorithm recovers the secret key in expected quadratic time. (assuming that the effect of a bit error during reconstruction is propagated uniformly through subsequent bits of the key

3

Branching Analysis (simplified) – Two Signatures

Growth factor of the Search Tree: $2 - 2\delta + \gamma \delta^2$

Polynomial time attack ?
 → Keep the growth factor ≃ 1 to restrict growth.

$$\delta = (1 - \sqrt{1 - \gamma})/\gamma$$

• Experimental observation: $\gamma \simeq 1/2$ (open problem)

$$\delta \simeq 2 - \sqrt{2} \simeq 0,5857$$

For $\delta > 2 - \sqrt{2}$, the algorithm recovers the secret key in expected quadratic time. (assuming that the effect of a bit error during reconstruction is propagated uniformly through subsequent bits of the key

Damien Vergnaud (ENS)

Key Recovery from Random Nonce Bits

September, 15th 2015 13 / 20

Branching Analysis (simplified) – n Signatures

Assumption: δ -fraction of r_1, \ldots, r_n bits known

- $\#\{r_1[i],\ldots,r_n[i] \text{ known}\}=0$: 2 Branches, Prob = $(1 \delta)^n$
- $\#\{r_1[i],\ldots,r_n[i] \text{ known}\} = 1$: 1 Branches, Prob = $n\delta(1-\delta)^{n-1}$
- $\#\{r_1[i], \ldots, r_n[i] \text{ known}\} = 2: \gamma_1 \text{ Branches, Prob} = {n \choose 2} \delta^2 (1 \delta)^{n-2}$ • ...
- #{ $r_1[i], \ldots, r_n[i]$ known} = $n: \gamma_{n-1}$, Prob = δ^n
- Experimental observation: $\gamma_i \simeq 2^{-i}$ (open problem)

For $\delta > 2 - 2^{1-1/n} \simeq \ln(2)/n$, the algorithm recovers the secret key in $O(nk^2)$ expected time. (assuming that the effect of a bit error during reconstruction is propagated uniformly through subsequent bits of the key

-

< 日 > < 同 > < 回 > < 回 > < □ > <

Branching Analysis (simplified) – n Signatures

Assumption: δ -fraction of r_1, \ldots, r_n bits known

- #{ $r_1[i], \ldots, r_n[i]$ known} = 0: 2 Branches, Prob = $(1 \delta)^n$
- $\#\{r_1[i],\ldots,r_n[i] \text{ known}\}=1$: 1 Branches, Prob = $n\delta(1-\delta)^{n-1}$
- $\#\{r_1[i], \ldots, r_n[i] \text{ known}\} = 2: \gamma_1 \text{ Branches, Prob} = {n \choose 2} \delta^2 (1 \delta)^{n-2}$ • ...
- #{ $r_1[i], \ldots, r_n[i]$ known} = $n: \gamma_{n-1}$, Prob = δ^n
- Experimental observation: $\gamma_i \simeq 2^{-i}$ (open problem)

For $\delta > 2 - 2^{1-1/n} \simeq \ln(2)/n$, the algorithm recovers the secret key in $O(nk^2)$ expected time. (assuming that the effect of a bit error during reconstruction is propagated uniformly through subsequent bits of the key

-

イロト 不得 トイヨト イヨト

Binary Erasure Channel

- Channel capacity: 1δ
- Code C: set of 2^r words on *nr* bits (*r* Hensel lifts w/o any pruning)
 → Code rate: 1/n
- Received word: noisy version of the nonces.

不同 トイモトイモ

Binary Erasure Channel

- Channel capacity: 1δ
- Code C: set of 2^r words on nr bits (r Hensel lifts w/o any pruning)
 → Code rate: 1/n
- Received word: noisy version of the nonces.

Shannon's noisy-channel coding theorem

Reliable decoding impossible when the code rate exceeds the capacity.

 \rightsquigarrow Variants of the algorithm cannot be efficient for $\delta \leq 1/p$

Damien Vergnaud (ENS)

Key Recovery from Random Nonce Bits

What about errors instead of erasures?

- Scenario: Attacker gets all bits but errors occur
 - i.e. we obtain erroneous versions of nonces
- Motivation: Physical measurements induces random faults.

The adversary knows r'_1, \ldots, r'_n s.t.

$$\Pr(r'_j[i] = r_j[i]) = 1 - \delta, \text{ for all } i, j$$

(for simplicity, we assume δ is known)

Information provided by the Oracle is no longer fault-free!

A (10) A (10)

Can we adapt the previous algorithm?

- The previous pruning algorithm requires correct bits.
 - otherwise we might prune the correct solution
- Need pruning with the following properties:
 - Correct key survives with large probability.
 - Sufficiently many incorrect keys are pruned.
 - similar to Henecka-May-Meurer error correction in RSA secret keys (Crypto'10)
- IDEA: Use many subsequent bits instead of just one
 - grow subtrees of depth t
 - prune leaves whose Hamming distance is greater than some threshold d

Can we adapt the previous algorithm?

- The previous pruning algorithm requires correct bits.
 - otherwise we might prune the correct solution
- Need pruning with the following properties:
 - Correct key survives with large probability.
 - Sufficiently many incorrect keys are pruned.
 - similar to Henecka-May-Meurer error correction in RSA secret keys (Crypto'10)

IDEA: Use many subsequent bits instead of just one

- grow subtrees of depth t
- prune leaves whose Hamming distance is greater than some threshold d

Can we adapt the previous algorithm?

- The previous pruning algorithm requires correct bits.
 - otherwise we might prune the correct solution
- Need pruning with the following properties:
 - Correct key survives with large probability.
 - Sufficiently many incorrect keys are pruned.
 - similar to Henecka-May-Meurer error correction in RSA secret keys (Crypto'10)

IDEA: Use many subsequent bits instead of just one

- grow subtrees of depth t
- prune leaves whose Hamming distance is greater than some threshold d

Analysis of Error-Correction

- GOALS:
 - # of nodes polynomially bounded (t not too large, i.e. $t = O(\log r)$)
 - Separate correct and incorrect partial solutions (t large)
 - Correct solution passes all pruning steps (d not too large)
 - Few incorrect solutions survive pruning (d large)
- Analysis (see paper): for $\epsilon > 0$
 - $t = \ln(\underline{R})/n\epsilon^2$
 - $\gamma = \sqrt{(1+1/t)\ln(2)/2n}$
 - $\bullet \ d = nt(1/2 + \gamma)$

$$\delta = 1/2 - \gamma - \epsilon$$

3

Analysis of Error-Correction

- GOALS:
 - # of nodes polynomially bounded (t not too large, i.e. $t = O(\log r)$)
 - Separate correct and incorrect partial solutions (t large)
 - Correct solution passes all pruning steps (d not too large)
 - Few incorrect solutions survive pruning (d large)
- Analysis (see paper): for $\epsilon > 0$

$$t = \ln(R)/n\epsilon^{2}$$

$$\gamma = \sqrt{(1 + 1/t)\ln(2)/2n}$$

$$d = nt(1/2 + \gamma)$$

$$\bullet \ \delta = 1/2 - \gamma - \epsilon$$

3

Cryptanalytic Result

For $\epsilon > 0$ and $\delta > \frac{1}{2} - \sqrt{\frac{\ln(2)}{2n}} - \epsilon$, the algorithm recovers the secret key in $O(nk^{2+\ln(2)/n\epsilon^2})$ expected time. (assuming that the effect of a bit error during reconstruction is propagated uniformly through subsequent bits of the key

п	2	3	4	5	6	п
δ	0.084	0.160	0.205	0.237	0.260	$1/2 - \sqrt{\ln(2)/2n}$
δ^*	0.110	0.174	0.214	0.243	0.264	$H_2^{-1}(1-1/n)$

Conclusion

• Key recovery attack on DL-based authentication schemes

- given a random fraction of nonce bits
- given all bits with noise
- The two approaches can be combined (and also with other side information)

• Open problems:

- Combine these algorithms with discrete-log algorithms with partial knowledge
- Adapt to schemes with modular reduction (using leakage of modular reduction ?)

3