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Identification Schemes

enables a prover to identify itself to a verifier
Adversary goal: impersonation

I playing the role of Alice but denied the secret key,
I it should have negligible probability of making Bob accept.
I passive attacks / active attacks
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Schnorr’s Identification Scheme
G = 〈g〉 a group of prime order q
Prover P proves to verifier V that it knows the discrete log x of a public
group element y = gx .

P V

x
R←−Zq

y=gx y
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GPS Identification Scheme

proposed by Girault in 1991

formally analyzed by Poupard, and Stern in 1998

based on Schnorr’s identification scheme

Leaves modular reduction in response-calculation step
I save computation time
I allows fast on-the-fly authentication (use of coupons)

 signatures using Fiat-Shamir transform

Damien Vergnaud (ENS) Key Recovery from Random Nonce Bits September, 15th 2015 5 / 20



GPS Identification Scheme
G = 〈g〉 a group
Prover P proves to verifier V that it knows the discrete log x of a public
group element y = gx .

Parameters (128-bit security level): (S,R,C) = (256,512,128)

P V

x
R←−{1,...,2S}

y=gx y

r
R←−{1,...,2R}

Z=gr
Z

c
R←−{1,...,2C}c

s=r+cx s

gs·y−c ?
=Z
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Cryptanalysis of DL-based Schemes

Discrete logarithm computation of x = logg(y) impersonation

Knowledge of r = logg(Z )
 Key recovery: s = r + cx ⇒ x = (s − r)/c  impersonation

This knowledge may be due to
I a weak random number generator
I a timing attack
I a probing attack
I . . .
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Cryptanalysis of DL-based Schemes

Kuwakado, Tanaka (1999):
half of r ’s LSB leaked for two identification/signatures

Howgrave-Graham, Smart, Nguyen, Shparlinski (2001-2002):
fraction of r ’s consecutive bits for several identification/signatures

Our work:
fraction of r ’s bits for several identification/signatures
not necessarily consecutive
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Our Work

reconstructing private keys given a random fraction of nonce bits
I elementary and does not make use of the lattice techniques
I similar to reconstruction of RSA secret key

(Heninger et al. Crypto’09 + Crypto’10)

specialized to the case where the value r + cx is known over Z
I GPS identification under passive attacks
I GPS signature (Fiat-Shamir heuristic)
I Schnorr identification under active attacks (small challenge)

analysis of the algorithm’s runtime behavior
algorithm implemented (extensive experiments using it)
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General Idea – Two Signatures

r1 + c1x = s1
r2 + c2x = s2

GOAL: reconstruct bits of nonces starting at the LSB.
APPROACH (odd c1 and c2)

I 4 choices for each pair of bits (r1[i], r2[i]) # Search space: 22R

I reduces to 2 as the relation

c2r1 − c1r2 = c2s1 − c1s2 = C

gives

r1[i] + r2[i] = (C − c2r1[0..i − 1]− c1r2[0..i − 1])[i] mod 2

 # Search space: 2R (same as exhaustive search!)

IDEA: Search tree can be pruned if we know some bits of r1, r2
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Solution Tree: Example

c1 = 9, s1 = 147

c2 = 15, s2 = 239

C = 54
r1 = 1???, r1 = ??10

c2r1 − c1r2 = C

0000
1010

r1
r2

0
0

1
1
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Branching Analysis – Two Signatures

r1[i] or r2[i] is known
 the equation fixes the other bit.

r1[i] and r2[i] known
 the equation is either satisfied or not.

Assumption: δ-fraction of r1 and r2 bits known

#{r1[i], r2[i] known} = 0: 2 Branches, Prob = (1− δ)2

#{r1[i], r2[i] known} = 1: 1 Branch , Prob = 2δ(1− δ)
#{r1[i], r2[i] known} = 2: γ Branch , Prob = δ2 for 0 < γ < 1

Expected number of branches from each node:

2 · (1− δ2) + 1 · 2δ(1− δ) + γ · δ2 = 2− 2δ + γδ2
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Branching Analysis (simplified) – Two Signatures

Growth factor of the Search Tree: 2− 2δ + γδ2

Polynomial time attack ?
 Keep the growth factor ' 1 to restrict growth.

δ = (1−
√

1− γ)/γ

Experimental observation: γ ' 1/2 (open problem)

δ ' 2−
√

2 ' 0,5857

For δ > 2−
√

2, the algorithm recovers the secret key in expected
quadratic time.
(assuming that the effect of a bit error during reconstruction is
propagated uniformly through subsequent bits of the key
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Branching Analysis (simplified) – n Signatures

Assumption: δ-fraction of r1, . . . , rn bits known

#{r1[i], . . . , rn[i] known} = 0: 2 Branches, Prob = (1− δ)n

#{r1[i], . . . , rn[i] known} = 1: 1 Branches, Prob = nδ(1− δ)n−1

#{r1[i], . . . , rn[i] known} = 2: γ1 Branches, Prob =
(n

2

)
δ2(1− δ)n−2

. . .
#{r1[i], . . . , rn[i] known} = n: γn−1, Prob = δn

Experimental observation: γi ' 2−i (open problem)

For δ > 2− 21−1/n ' ln(2)/n, the algorithm recovers the secret key in
O(nk2) expected time.
(assuming that the effect of a bit error during reconstruction is
propagated uniformly through subsequent bits of the key
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Binary Erasure Channel

0

1

0

?

11− δ

1− δ

δ
δ

Channel capacity: 1− δ
Code C: set of 2r words on nr bits (r Hensel lifts w/o any pruning)
 Code rate: 1/n
Received word: noisy version of the nonces.

Shannon’s noisy-channel coding theorem
Reliable decoding impossible when the code rate exceeds the capacity.

 Variants of the algorithm cannot be efficient for δ < 1/n
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What about errors instead of erasures?

Scenario: Attacker gets all bits but errors occur
I i.e. we obtain erroneous versions of nonces

Motivation: Physical measurements induces random faults.

The adversary knows r ′1, . . . , r
′
n s.t.

Pr(r ′j [i] = rj [i]) = 1− δ, for all i , j

(for simplicity, we assume δ is known)

Information provided by the Oracle is no longer fault-free!
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Can we adapt the previous algorithm?

The previous pruning algorithm requires correct bits.
I otherwise we might prune the correct solution

Need pruning with the following properties:
I Correct key survives with large probability.
I Sufficiently many incorrect keys are pruned.
I similar to Henecka-May-Meurer error correction in RSA secret keys

(Crypto’10)

IDEA: Use many subsequent bits instead of just one
I grow subtrees of depth t
I prune leaves whose Hamming distance is greater than some

threshold d
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Analysis of Error-Correction

GOALS:
I # of nodes polynomially bounded (t not too large, i.e. t = O(log r))
I Separate correct and incorrect partial solutions (t large)

I Correct solution passes all pruning steps (d not too large)
I Few incorrect solutions survive pruning (d large)

Analysis (see paper): for ε > 0
I t = ln(R)/nε2
I γ =

√
(1 + 1/t) ln(2)/2n

I d = nt(1/2 + γ)
I δ = 1/2− γ − ε
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Cryptanalytic Result

For ε > 0 and δ > 1
2 −

√
ln(2)
2n − ε, the algorithm recovers the secret key

in O(nk2+ln(2)/nε2) expected time.
(assuming that the effect of a bit error during reconstruction is
propagated uniformly through subsequent bits of the key

n 2 3 4 5 6 n
δ 0.084 0.160 0.205 0.237 0.260 1/2 −

√
ln(2)/2n

δ∗ 0.110 0.174 0.214 0.243 0.264 H−1
2 (1 − 1/n)
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Conclusion

Key recovery attack on DL-based authentication schemes
I given a random fraction of nonce bits
I given all bits with noise

The two approaches can be combined (and also with other side
information)

Open problems:
I Combine these algorithms with discrete-log algorithms with partial

knowledge
I Adapt to schemes with modular reduction (using leakage of

modular reduction ?)

Damien Vergnaud (ENS) Key Recovery from Random Nonce Bits September, 15th 2015 20 / 20


	Introduction
	DL-based Identification Schemes
	Cryptanalysis of DL-based Authentication Schemes

	First attack: Exact Partial Knowledge of Nonces
	Key Recovery with Two Signatures
	(Key Recovery with More Signatures
	Coding-Theoretic Viewpoint

	Second Attack: Correcting Errors in Nonces

