

Saint-Malo, September 13th, 2015 Cryptographic Hardware and Embedded Systems

Highly Efficient *GF*(2⁸) Inversion Circuit Based on Redundant GF Arithmetic and Its Application to AES Design

<u>Rei Ueno</u>¹, Naofumi Homma¹, Yukihiro Sugawara¹, Yasuyuki Nogami², and Takafumi Aoki¹

Joint work with ¹ Tohoku University and ² Okayama University

Outline

Introduction

- Redundant GF arithmetic
- \blacksquare *GF*(2⁸) inversion circuit
- AES encryption S-Box
- Concluding remarks

Background

Demands for compact and efficient crypto. HW Applications to resource-limited devices in IoT

Light-weight AES implementation

www.hitachi.com

- Connectivity of existing systems and protocols
- □ Influence on other ciphers (e.g., Camellia, SNOW 3G)

AES processors

GF(2⁸) inversion is critical in AES processors

Major part of SubBytes

38% delay of

round datapath

[Morioka+ 2004]

Round key ↓128

Round-based architecture

+32+32+32

+32+32+32

Data randomization

+32

SubBytes

ShiftRows

MixColumns

AddRoundKey

+32

₹128 Ciphertext

Byte-serial architecture

Ciphertext 28% area of combinational block [Moradi+ 2011]

Compact and efficient $GF(2^8)$ inversion circuit is desirable

Design of $GF(2^8)$ inversion circuit

Arithmetic approach for AES S-box design

- □ Field towering and GF representation make a difference
 - Tower field: $GF(((2^2)^2)^2)$, $GF((2^4)^2)$
 - GF representation: PB, NB, MB, RRB...

Key trick

- Combination of three GF representations
 - One non-redundant representation: Normal Basis (NB)
 - **D** Two redundant representations:
 - Polynomial Ring Representation (PRR)
 - Redundantly Represented Basis (RRB)

Proposed circuit architecture

Results

- Highly efficient $GF(2^8)$ inversion circuit
 - Redundant GF arithmetic makes difference
 - 38% faster than the conventional smallest one w/o area overhead
- Application to AES encryption S-box
 Isomorphic mappings optimized for efficiency
 17% more efficient than state-of-the-art S-boxes

	Field	Area [GE]	Timing [ns]	AT product
[Canright 2005]	$GF(((2^2)^2)^2)$	237.33	2.92	693.00
[Nekado 2012]	$GF((2^4)^2)$	272.67	1.89	515.35
This work	$GF((2^4)^2)$	229.67	1.81	415.70

Outline

Introduction

- Redundant GF arithmetic
- \blacksquare *GF*(2⁸) inversion circuit
- AES encryption S-box
- Concluding remarks

What's redundant GF arithmetic?

- Represent $GF(2^m)$ element by *n* bits (n > m)
 - Modular polynomial: n-th degree reducible polynomial
- Polynomial Ring Representation (PRR)
 Equal to Cyclic Redundancy Code (CRC)
 - <u>Don't-care inputs</u> (explained by code theory)
 - Efficient for non-linear operations e.g., inversion
- Redundantly Represented Basis (RRB)
 - **\Box** Linear combination of linear dependent elements of $GF(2^m)$
 - Each element is NOT represented uniquely
 - Efficient for multiplication

Why redundant GF arithmetic?

- Modular polynomial determines performance of GF arithmetic circuit
 - **D** Binomial $x^n + 1$ is optimal but reducible
 - Redundant GF can exploit binomial
 - $x^5 + 1$ is available for redundant $GF(2^4)$

Critical factors of GF arithmetic algorithm

Rep.	<u>Modular</u> polynomial	Squaring	Multiplication	Inversion
PB	Irreducible	XOR-gate array	Mastrovito	ITA
NB	Irreducible	Bit-wise permutation	Massey-Omura	ITA
PRR	Binomial	Bit-wise permutation	CVMA	Mapping
RRB	Binomial	Bit-wise permutation	Reduced CVMA	ITA

Why redundant GF arithmetic?

- Modular polynomial determines performance of GF arithmetic circuit
 - **D** Binomial $x^n + 1$ is optimal but reducible
 - Redundant GF can exploit binomial
 - $x^5 + 1$ is available for redundant $GF(2^4)$

Critical factors of GF arithmetic algorithm

Rep.	<u>Modular</u> polynomial	Squaring	Multiplication	Inversion
PB	Irreducible	Bad	OK	OK
NB	Irreducible	Good	Bad	OK
PRR	Binomial	Good	Good	Good
RRB	Binomial	Good	Very good	OK

Outline

Introduction

- Redundant GF arithmetic
- \blacksquare *GF*(2⁸) inversion circuit
- AES encryption S-Box
- Concluding remarks

Tower field inversion: Itoh-Tsujii Algorithm (ITA)

 $\blacksquare GF(q^m) \text{ inversion based on ITA is given by}$ $a^{-1} = (a^{q^1} \times a^{q^2} \times \dots \times a^{q^{m-1}}) \times (a^{q^0} \times a^{q^1} \times \dots \times a^{q^{m-1}})^{-1}$

 \square *q*-th power over $GF(q^m)$ is Frobenius mapping

- Performed by cyclic shift in NB
- □ Usage of norm of input *a*
 - Considered as subfield (GF(q)) element
 - Inversion in *rhs* is GF(q) inversion

ITA for
$$GF((2^4)^2)$$
 and $GF(((2^2)^2)^2)$, i.e., $q = 16$, $m = 2$
 $a^{-1} = a^{16} \times (a \times a^{16})^{-1}$

□ a^{16} calculated by only twisting wires □ $a \times a^{16}$ is $GF(2^4)$ element

ITA-based tower field inversion circuit

Area-Time efficiency evaluation

NB-based $GF(((2^2)^2)^2)$ inversion [Canright, 2005]

Area-Time efficiency evaluation

RRB-based $GF((2^4)^2)$ inversion [Nekado, 2012]

Proposed concept

Use the best representation for each stage

To avoid additional gates for conversion

- Mapping from <u>NB to PRR</u> is isomorphism
 □ Performed by applying linear mapping Φ to a¹⁷
- Merging Φ and constant multiplications in a^{17} Stage 1 output d (a^{17} in PRR) given by $d = \Phi(a^{17}) = \Phi(hl\mu^2) + \Phi((h+l)^2\nu)$ $= \Phi'(hl) + \Phi''((h+l)^2)$
 - Φ', Φ'' : merged linear mapping
- Symmetric property of GF(2⁴) NB for h and l can further reduce Stage 1 delay

Straight-forward mapping	Asymmetric NB	Symmetric NB
$T_A + 5T_X$	$T_A + 4T_X$	$T_A + 3T_X$
	T_A , T_X : delay o	f AND and XOR gate

Effect of PRR in Stage 2

Don't-care condition of PRR is useful for GF(2⁴) inversion function

Field	Representation	Critical delay
$GF((2^2)^2)$	PB	$2T_{A} + 7T_{X}$
$GF((2^2)^2)$	NB	$2T_{A} + 5T_{X}$
$GF(2^{4})$	PB	$2T_A + 2T_X$
$GF(2^{4})$	NB	$2T_A + 2T_X$
$GF(2^{4})$	RRB	$2T_A + 2T_X$
$GF(2^{4})$	PRR	$T_A + T_O + T_X$

 T_A, T_O, T_X : delay of AND, OR, and XOR gate

Conversion from <u>PRR to RRB</u> can also be performed without logic gates

Proposed circuit

Inputs to stage 1 and 3 should be shared
 H, *L*, and *F* are shared XOR-gate array
 To save 22 XOR gates

NBtoRRB converts element from <u>NB to RRB</u>
 Performed by only wiring

Performance evaluation

	Tower Field	Represen -tation	Gate count (AND, OR, XOR, XNOR, NOT, NAND,NOR)	Critical delay path
Satoh et al.	$GF(((2^2)^2)^2)$	PB	(30, 0, 96, 0, 0, 6, 0)	$4T_{A} + 17T_{X}$
Canright	$GF(((2^2)^2)^2)$	NB	(0, 0, 56, 0, 0, 34, 6)	$4T_A + 15T_X$
Nogami et al.	$GF(((2^2)^2)^2)$	PB, NB	(36, 0, 95, 0, 0, 0, 0)	$4T_A + 14T_X$
Rudra et al.	$GF((2^4)^2)$	PB	(60, 0, 72, 0, 0, 0, 0)	$4T_A + 10T_X$
Jeon et al.	$GF((2^4)^2)$	PB	(58, 2, 67, 0, 0, 0, 0)	$4T_A + 10T_X$
Nekado et al.	$GF((2^4)^2)$	RRB	(42, 0, 68, 2, 0, 0, 0)	$4T_A + 7T_X$
This work	$GF((2^4)^2)$	NB, PRR, RRB	(38, 16, 51, 0, 4, 0, 0)	$3T_A + T_O + 6T_X$

 T_A, T_O, T_X : Delay of AND, OR, and XOR gate

- Shortest critical delay path
- Gate count comparable with the conventional smallest

Synthesis with area optimization
 Logic synthesis: Design Compiler, Synopsys
 Cell Library: Standard 65 nm, TSMC

	Tower Field	Represent ation	Area [GE]	Timing [ns]	AT product
Canright*	$GF(((2^2)^2)^2)$	NB	237.33	2.92	693.00
Nekado et al.**	$GF((2^4)^2)$	RRB	272.67	1.89	515.35
This work	$GF((2^4)^2)$	NB, PRR, RRB	229.67	1.81	415.70

*HDL code was obtained from Canright's website

**HDL code was described by ourselves according to the paper

Our inversion circuit achieved the best efficiency (i.e. AT product) and area

Outline

Introduction

- Redundant GF arithmetic
- \blacksquare *GF*(2⁸) inversion circuit
- AES encryption S-Box
- Concluding remarks

AES encryption S-box

Require isomorphic mappings and affine trans
 Later matrix operations should be merged

- Conversion matrices optimization for efficiency
 - Hamming weight of each row should be less than 4

Hamming weight = 4

Hamming weight = 5 4 $3T_x$ delay

Synthesis result

Critical delay path			Area	Timing	AT	
	lso.	Inversion	Iso. ⁻¹ +Affine	[GE]	[ns]	product
Canright	$3T_X$	$4T_A + 15T_X$	$3T_X$	315.67	4.30	1,357.38
Nekado et al.	$2T_X$	$4T_A + 7T_X$	$3T_X$	386.00	3.29	1,269.94
This work	$2T_X$	$3T_A + T_O + 6T_X$	$3T_X$	332.00	3.17	1,052.44

Our S-Box achieved the highest efficiency

- Synthesis with area-optimization option
- Optimization of conversion matrix operations
 - Canrights' are optimized for low-area
 - Nekados' and ours are optimized for efficiency
 - Low-area optimization of our S-box is a future work

- **Highly efficient** $GF(2^8)$ inversion circuit
 - □ 38% faster than the conventional one w/o area overhead
- AES encryption S-Box with isomorphism optimization for efficiency
 - Achieved the lowest Area-Time product
- Future work
 - Further optimization of conversion matrices
 - Lower-area or/and higher efficiency
 - Both encryption and decryption S-box
 - Design of AES datapath with the proposed S-box