Blind Source Separation from Single Measurements using Singular Spectrum Analysis

CHES 2015 14.Sept.2015, Saint-Malo, France

Santos Merino del Pozo and François-Xavier Standaert

ICTEAM/ELEN/Crypto Group Université catholique de Louvain, Belgium.

 \blacktriangleright More noise \rightarrow More side-channel measurements

- \blacktriangleright More noise \rightarrow More side-channel measurements
 - attacks become more challenging
 - critical for higher-order (HO) attacks !!

- \blacktriangleright More noise \rightarrow More side-channel measurements
 - attacks become more challenging
 - critical for higher-order (HO) attacks !!
- Ideally, low-noise measurements

- \blacktriangleright More noise \rightarrow More side-channel measurements
 - attacks become more challenging
 - critical for higher-order (HO) attacks !!
- Ideally, low-noise measurements
 - can be difficult to achieve in practice
 - ▶ architecture, countermeasures, measurement setup, ...

- \blacktriangleright More noise \rightarrow More side-channel measurements
 - attacks become more challenging
 - critical for higher-order (HO) attacks !!
- Ideally, low-noise measurements
 - can be difficult to achieve in practice
 - ▶ architecture, countermeasures, measurement setup, ...
- ► So, *preprocessing* the collected traces is always advisable

Averaging

Digital filtering

PCA and LDA

UCL Crypto Group

Averaging

- ✓ easy yet effective
- $\pmb{\mathsf{X}}$ useless when exploiting HO leakages
- Digital filtering

PCA and LDA

Averaging

- ✓ easy yet effective
- $\pmb{\mathsf{X}}$ useless when exploiting HO leakages
- Digital filtering
 - ✓ relevant for HO analysis
 - ✗ not trivial to design
- PCA and LDA

Averaging

- ✓ easy yet effective
- $\pmb{\mathsf{X}}$ useless when exploiting HO leakages
- Digital filtering
 - ✓ relevant for HO analysis
 - ✗ not trivial to design
- PCA and LDA
 - \checkmark intuitive and easy to implement
 - **x** requires profiling, extension to HO analysis?

Our Solution

 Blind source separation using Singular Spectrum Analysis (SSA)

Our Solution

- Blind source separation using Singular Spectrum Analysis (SSA)
- Disregarded in the context of side-channel analysis
- Cool features from the attackers point-of-view
 - working in a per-trace fashion
 - being readily applied to HO scenarios
 - not requiring proficiency in signal processing
 - not needing a profiling stage

Outline

Singular Spectrum Analysis 101

Experimental Results Masked software Unprotected hardware

Conclusions

UCL Crypto Group

- First, take $W = \lfloor \log(N)^c \rfloor$ with $c \in [1.5, 3]$,
- define D = N W + 1 delayed vectors

- First, take $W = \lfloor \log(N)^c \rfloor$ with $c \in [1.5, 3]$,
- define D = N W + 1 delayed vectors

$$\ell^1$$

 ℓ^2
 \vdots
 ℓ^W

UCL Crypto Group

- First, take $W = \lfloor \log(N)^c \rfloor$ with $c \in [1.5, 3]$,
- define D = N W + 1 delayed vectors

UCL Crypto Group

$$\begin{array}{ccc} \ell^1 & \ell^2 \\ \ell^2 & \ell^3 \\ \vdots & \vdots \\ \ell^W & \ell^{W+1} \end{array}$$

- First, take $W = \lfloor \log(N)^c \rfloor$ with $c \in [1.5, 3]$,
- define D = N W + 1 delayed vectors

- First, take $W = \lfloor \log(N)^c \rfloor$ with $c \in [1.5, 3]$,
- define D = N W + 1 delayed vectors
- ▶ and then build the so-called trajectory matrix L

$$\mathbf{L} = \begin{pmatrix} \ell^1 & \ell^2 & \cdots & \ell^D \\ \ell^2 & \ell^3 & \cdots & \ell^{D+1} \\ \vdots & \vdots & \ddots & \vdots \\ \ell^W & \ell^{W+1} & \cdots & \ell^N \end{pmatrix}$$

UCL Crypto Group

Compute the eigenvalues of $\mathbf{L}\mathbf{L}^{\top}$

- $(\lambda_1 \geq \cdots \geq \lambda_d)$, the so-called *singular spectrum*
- d = W if none of them is zero

together with the corresponding eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_d$

Compute the eigenvalues of $\mathbf{L}\mathbf{L}^{\top}$

- $(\lambda_1 \geq \cdots \geq \lambda_d)$, the so-called *singular spectrum*
- d = W if none of them is zero

together with the corresponding eigenvectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_d$ The SVD decomposition of **L** is

$$\mathbf{L} = \tilde{\mathbf{L}}_1 + \dots + \tilde{\mathbf{L}}_d,$$

such that $\tilde{\mathbf{L}}_i = \sqrt{\lambda_i} \mathbf{u}_i \mathbf{v}_i^{\top}$ and $\mathbf{v}_i = \frac{\mathbf{L}^{\top} \mathbf{u}_i}{\sqrt{\lambda_i}}$

UCL Crypto Group

Now, we are ready to extract the underlying components of ℓ • Each \tilde{L}_i matrix is transformed into the *i*-th component

$$\tilde{\boldsymbol{\ell}}_i = \left(\tilde{\ell}_i^1, \dots, \tilde{\ell}_i^N \right)$$

Now, we are ready to extract the underlying components of ℓ

• Each \tilde{L}_i matrix is transformed into the *i*-th component

$$ilde{oldsymbol{\ell}}_i = \left(ilde{\ell}_i^1, \dots, ilde{\ell}_i^N
ight)$$

• Trivial when $\tilde{\mathbf{L}}_i$ is a Hankel matrix, i.e.,

$$\tilde{\mathbf{L}}_{i} = \begin{pmatrix} \tilde{\ell}_{i}^{1} & \tilde{\ell}_{i}^{2} & \tilde{\ell}_{i}^{3} & \cdots \\ \tilde{\ell}_{i}^{2} & \tilde{\ell}_{i}^{3} & \cdots & \cdots \\ \tilde{\ell}_{i}^{3} & \vdots & \ddots & \tilde{\ell}_{i}^{N-1} \\ \vdots & \vdots & \tilde{\ell}_{i}^{N-1} & \tilde{\ell}_{i}^{N} \end{pmatrix}$$

UCL Crypto Group

Now, we are ready to extract the underlying components of ℓ

• Each $\tilde{\mathbf{L}}_i$ matrix is transformed into the *i*-th component

$$ilde{oldsymbol{\ell}}_i = \left(ilde{\ell}_i^1, \dots, ilde{\ell}_i^N
ight)$$

• Trivial when $\tilde{\mathbf{L}}_i$ is a Hankel matrix, i.e.,

$$\tilde{\mathbf{L}}_{i} = \begin{pmatrix} \tilde{\ell}_{i}^{1} & \tilde{\ell}_{i}^{2} & \tilde{\ell}_{i}^{3} & \cdots \\ \tilde{\ell}_{i}^{2} & \tilde{\ell}_{i}^{3} & \cdots & \cdots \\ \tilde{\ell}_{i}^{3} & \vdots & \ddots & \tilde{\ell}_{i}^{N-1} \\ \vdots & \vdots & \tilde{\ell}_{i}^{N-1} & \tilde{\ell}_{i}^{N} \end{pmatrix}$$

▶ but since this is not the case, the so-called *hankelization* function must be applied on each \tilde{L}_i

Lastly, the original leakage trace ℓ can be reconstructed as

$$oldsymbol{\ell} = ilde{oldsymbol{\ell}}_1 + \dots + ilde{oldsymbol{\ell}}_d$$

UCL Crypto Group Santos Merino del Pozo - CHES 2015 - 14.Sept.2015

Lastly, the original leakage trace ℓ can be reconstructed as

but we aim at a signal vs. noise decomposition

 $\boldsymbol{\ell} = ilde{\boldsymbol{\ell}}_1 + \dots + ilde{\boldsymbol{\ell}}_d$

UCL Crypto Group Santos Merino del Pozo - CHES 2015 - 14.Sept.2015

Lastly, the original leakage trace ℓ can be reconstructed as

- but we aim at a signal vs. noise decomposition
- $\mathcal{I} = \{1, \dots, d\}$ is partitioned into $\mathcal{I}_{\mathsf{signal}}$ and $\mathcal{I}_{\mathsf{noise}}$,

$$\boldsymbol{\ell} = ilde{oldsymbol{\ell}}_1 + \cdots + ilde{oldsymbol{\ell}}_d$$

Lastly, the original leakage trace ℓ can be reconstructed as

but we aim at a signal vs. noise decomposition

UCL Crypto Group

- $\mathcal{I} = \{1, \dots, d\}$ is partitioned into $\mathcal{I}_{\mathsf{signal}}$ and $\mathcal{I}_{\mathsf{noise}}$, so

$$oldsymbol{\ell} = \sum_{i \in \mathcal{I}_{ ext{signal}}} \widetilde{oldsymbol{\ell}}_i + \sum_{i \in \mathcal{I}_{ ext{noise}}} \widetilde{oldsymbol{\ell}}_i$$

Lastly, the original leakage trace ℓ can be reconstructed as

- but we aim at a signal vs. noise decomposition
- $\mathcal{I} = \{1, \dots, d\}$ is partitioned into $\mathcal{I}_{\mathsf{signal}}$ and $\mathcal{I}_{\mathsf{noise}}$, so

$$\ell = \sum_{i \in \mathcal{I}_{ ext{signal}}} ilde{\ell}_i + \sum_{i \in \mathcal{I}_{ ext{noise}}} ilde{\ell}_i$$

Criteria

- $\blacktriangleright \ \mathcal{I}_{\text{noise}} \rightarrow$ small singular values producing a slowly decreasing sequence
- $\mathcal{I}_{\mathsf{signal}} \to \mathsf{the} \ \mathsf{remaining} \ \mathsf{ones} \ \textcircled{\odot}$

Experimental Results

Two experimental platforms

Atmel 8-bit µC (ATMega644p)

Spartan-6 FPGA (SAKURA-G)

Experimental Results

Two experimental platforms

- Atmel 8-bit µC (ATMega644p)
 - First-order boolean masking scheme of AES
 - High Signal-to-Noise Ratio
 - Profiling is allowed
- Spartan-6 FPGA (SAKURA-G)

Experimental Results

Two experimental platforms

- ► Atmel 8-bit µC (ATMega644p)
 - First-order boolean masking scheme of AES
 - High Signal-to-Noise Ratio
 - Profiling is allowed
- Spartan-6 FPGA (SAKURA-G)
 - Unprotected implementation of PRESENT-80
 - Low Signal-to-Noise Ratio
 - Small peak-to-peak signal \rightarrow quantization noise
 - Profiling is not allowed

Santos Merino del Pozo - CHES 2015 - 14.Sept.2015

Santos Merino del Pozo - CHES 2015 - 14.Sept.2015

Santos Merino del Pozo - CHES 2015 - 14.Sept.2015

Santos Merino del Pozo - CHES 2015 - 14.Sept.2015

Santos Merino del Pozo - CHES 2015 - 14.Sept.2015

Santos Merino del Pozo - CHES 2015 - 14.Sept.2015

Santos Merino del Pozo - CHES 2015 - 14.Sept.2015

Santos Merino del Pozo - CHES 2015 - 14.Sept.2015

Conclusions

- SSA in the context of side-channel analysis
 - intuitive, easy to use
 - $\blacktriangleright \textit{ window length} \rightarrow \texttt{standard rule-of-thumb}$
 - \blacktriangleright reconstruction \rightarrow visual inspection of components
 - works in a per-trace fashion
 - on-the-fly filtering
 - easily integrated into measurement frameworks
 - effective
 - SNR gains up to a factor of 4
 - attacks with reduced measurement complexity
- Future work:
 - more challenging scenarios (high noise + masking in hardware)
 - distinguish components at same frequencies?

Questions?

