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Motivation

large number of samples/ points of interest
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Motivation

Problem (profiled and non-profiled side-channel distinguisher)

How to reduce dimensionality of multi-dimensional measurements?

Wish list

simplification of the problem
concentration of the information (to distinguish using fewer traces)
improvement of the computational speed
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State-of-the-Art I

Selection of points of interest

manual selection of educated guesses [Oswald et al., 2006]
automated techniques: sum-of-square differences (SOSD) and
t-test (SOST) [Gierlichs et al., 2006]
wavelet transforms [Debande et al., 2012]

Leakage detection metrics

ANOVA (e.g. [Choudary and Kuhn, 2013, Danger et al., 2014])
or [Bhasin et al., 2014] (Normalized Inter-Class Variance (NICV))
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State-of-the-Art II

Principal Component Analysis

compact templates in [Archambeau et al., 2006]
reduce traces in [Batina et al., 2012]
eigenvalues as a security metric [Guilley et al., 2008]
eigenvalues as a distinguisher [Souissi et al., 2010]

easily and
accurately

computed with no
divisions involved

maximizing
inter-class

variance, but not
intra-class
variance
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State-of-the-Art II

Linear Discriminant Analysis

improved alternative
takes inter-class variance and intra-class variance into account
empirical comparisons [Standaert and Archambeau, 2008,
Renauld et al., 2011, Strobel et al., 2014]

not easily and
accurately

computed with no
divisions involved

maximizing
inter-class

variance and
intra-class
variance

But..

advantages due to the statistical tools, their implementation, data
set ...
no clear rationale to prefer one method!
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Contribution

dimensional reduction in SCA from a theoretical viewpoint
assuming attacker has full knowledge of the leakage
derivation of the optimal dimensionality reduction

“Less is more”
Advantages of dimensionality reduction can come with no impact on
the attack success probability!

comparison to PCA and LDA: theoretically and practically
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Notations

unknown secret key k∗, key byte hypothesis k
D different samples, d = 1, . . . , D

Q different traces/ queries, q = 1, . . . , Q

matrix notation MD,Q (D rows, Q columns)
leakage function ϕ

sensitive variable: Yq(k) = ϕ(Tq ⊕ k) (normalized variance ∀q )
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Model

trace Xd,q = αdYq(k
∗) +Nd,q

traces XD,Q = αDY Q(k∗) +ND,Q

noise: zero-mean Gaussian distribution, covariance Σ

independent of q but can be correlated among d
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Optimal distinguisher

Data processing theorem [Cover and Thomas, 2006]

Any preprocessing like dimensionality reduction can only decrease
information.

optimal means optimizing the success rate
known leakage model: optimal attack⇒ template attack
maximum likelihood principle

Given:
• Q traces of dimensionality D in a matrix xD,Q

• for each trace xDq : a plaintext/ciphertext tq
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Optimal distinguisher

D(xD,Q, tQ) = arg max
k

p(xD,Q|tQ, k∗ = k)

= arg max
k

pND,Q(xD,Q − αDyQ(k))

= arg max
k

Q∏
q=1

pND
q

(xDq − αDyq(k))

where

pND
q

(zD) =
1√

(2π)D| det Σ|
exp
(
−1

2
(zD)

T
Σ−1zD

)
.
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Optimal dimension reduction

Theorem
The optimal attack on the multivariate traces xD,Q is equivalent to the
optimal attack on the monovariate traces x̃Q, obtained from xD,Q by
the formula:

x̃q =
(
αD
)T

Σ−1xDq (q = 1, . . . , Q).

scalar = column D ·D ×D · row D
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Proof I

taking the logarithm, the optimal distinguisher D(xD,Q, tQ) rewrites

D(xD,Q, tQ) = arg min
k

Q∑
q=1

(
xDq − αDyq(k)

)T
Σ−1

(
xDq − αDyq(k)

)
.

expansion gives

(xDq )
T

Σ−1xDq︸ ︷︷ ︸
cst. C independent of k

− 2(αD)
T
yq(k)Σ−1xDq + (yq(k))2(αD)

T
Σ−1αD

= C − 2yq(k)
[
(αD)

T
Σ−1xDq

]
+ (yq(k))2

[
(αD)

T
Σ−1αD

]
=
[
(αD)

T
Σ−1αD

](
yq(k)−

(αD)
T

Σ−1xDq

(αD)TΣ−1αD

)2

+ C ′.
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Proof II

so, for D(xD,Q, tQ) we obtain

D(xD,Q, tQ) = arg min
k

Q∑
q=1

(
yq(k)−

(αD)
T

Σ−1xDq

(αD)TΣ−1αD

)2[
(αD)

T
Σ−1αD

]
= arg min

k

Q∑
q=1

(
x̃q − yq(k)

)2
σ̃2

,

where 
x̃q = σ̃2 · (αD)

T
Σ−1xDq ,

σ̃ =
(
(αD)

T
Σ−1αD

)−1/2
.
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Discussion

Optimal dimension reduction

Optimal distinguisher can be computed either:
on multivariate traces xDq , with a noise covariance matrix Σ

on monovariate traces x̃q, with scalar noise of variance σ̃2.

optimal dimensionality reduction does not depend on the
distribution of Y D(k)

also not on the confusion coefficient [Fei et al., 2012]
only on the signal weights αD and on the noise covariance Σ



19 Sept 14, 2015 Institut Mines-Télécom Dimensionality Reduction from a Theoretical Perspective

Discussion

Optimal dimension reduction

Optimal distinguisher can be computed either:
on multivariate traces xDq , with a noise covariance matrix Σ

on monovariate traces x̃q, with scalar noise of variance σ̃2.

optimal dimensionality reduction does not depend on the
distribution of Y D(k)

also not on the confusion coefficient [Fei et al., 2012]
only on the signal weights αD and on the noise covariance Σ



20 Sept 14, 2015 Institut Mines-Télécom Dimensionality Reduction from a Theoretical Perspective

SNR

Corollary

After optimal dimensionality reduction, the signal-noise-ratio is given by

1

σ̃2
= (αD)

T
Σ−1αD.
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Abstract
. Reducing the dimensionality of the measurements is an im-

portant problem in side-channel analysis. It allows to capture multi-

dimensional leakage
as one single compressed

sample, and therefore
also

helps to reduce the computational complexity. The other side of the coin

with dimensionality reduction is that it may at the same time reduce the

e�ciency of the attack, in terms of success probability.

In this paper, we carry out a mathematical analysis of dimensionality re-

duction. We show that optimal attacks remain optimal after a first pass

of preprocessing, which takes the form of a linear projection
of the sam-

ples. We then investiga
te the state-o

f-the-art dimensionality reduction

techniques, and find that asymptoticall
y, the optimal strateg

y coincides

with the linear discriminant analysis.

1 Introduction

Side-channel analysis exploits leakage
s from devices. Embedded systems are tar-

gets of choice for such attacks. Typical leakage
s are captured by instruments

such as oscillos
copes, which sample power or electro

magnetic traces.
The result-

ing leaked
information about sensitive variables is spread over time.

In practice
, two di↵erent attack

strateg
ies coexist. On the one hand, the vari-

ous leaked
samples can be considered individually—this is typical of non-profiled

attacks
such as Correlat

ion Power Analysis [2]. On the other hand, profiled at-

tacks character
ize the leakage

in a preliminary phase. An e�cient leakage
mod-

elizatio
n should then involve a multi-dimensional probabilistic representation [4].

The large number of samples to feed into the model has always been a prob-

lematic issue for multi-dimensional side-channel analysis. One solution is to use

techniques to select points of interest.
Most of them, such as sum-of-square dif-

ferences (SOSD) and t-test (SOST) [9], are ad hoc in that they result from

a criterio
n which is independent from the attacke

r’s key extractio
n objective.

? Annelie Heuser is a Google European fellow
in the field of privacy

and is partially

founded by this fellowship.

Examples
white noise:

S̃NR =

D∑
d=1

SNRd

autoregressive noise
(confirmed on dpacontest v2)
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Comparison to PCA

Classical PCA

centered data Md,q = Xd,q − 1
Q

∑Q
q′=1Xd,q′ (1 ≤ q ≤ Q, 1 ≤ d ≤ D)

directions of PCA: eigenvectors of MD,Q(MD,Q)
T

drawback: depends both on data and noise

Inter-class PCA [Archambeau et al., 2006]

centered column 1∑
1≤q≤Q
Yq=y

1

∑
1≤q≤Q
Yq=y

XD
q

takes into account the sensitive variable Y
noise is averaged away
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Comparison to PCA

For classical PCA
Asymptotically as Q −→ +∞,

1

Q
MD,Q(MD,Q)

T −→ αD(αD)
T

+ Σ.

Eigenvectors?

Proposition

Asymptotically, Inter-class PCA has only one principal direction,
namely the vector αD.
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Comparison to PCA

Proposition

The asymptotic SNR after projection using Inter-class PCA is equal to
‖αD‖4

2

(αD)TΣαD
.

Theorem
The SNR of the asymptotic Inter-class PCA is smaller than the SNR of
the optimal dimensionality reduction.

Corollary

The asymptotic Inter-class PCA has the same SNR as the optimal
dimensionality reduction if and only if αD is an eigenvector of Σ. In this
case, both dimensionality reductions are equivalent.
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Comparison to LDA

computes the eigenvectors of S−1
w Sb

Sw is the intra-class scatter matrix, asymptotically equal to Σ

Sb is the inter-class scatter matrix, equal to αD(αD)
T.

Proposition

Asymptotically, LDA has only one principal direction, namely the vector
Σ−1αD.

Theorem
The asymptotic LDA computes exactly the optimal dimensionality
reduction.
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Asymptotic PCA and LDA

D = 6 for autoregressive noise with σ = 1 and different ρ

(a) Equal SNRd = 1, 1 ≤ d ≤ D (b) Varying SNRd, 1 ≤ d ≤ D
αD = (1, 1, 1, 1, 1, 1)T αD =

√
6.0/6.4 · (1.0, 1.1, 1.2, 1.3, 0.9, 0.5)T
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Practical Validation

DPA CONTEST V2, one clock cycle D = 200

normalized Hamming weight
precharacterization of the model parameter αD and Σ (details in
the paper)

maxDd=1 α̂
2
d/Σ̂d,d = 1.69 · 10−3 (no dimensionality reduction)

SNRPCA = ((α̂D)
T
α̂D)2

(α̂D)TΣ̂α̂D
= 1.36 · 10−3 (PCA)

SNRLDA = (α̂D)
T

Σ̂α̂D = 12.78 · 10−3 (LDA)
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Conclusion and Perspectives

Optimal dimension reduction...

is part of the optimal attack
can be achieved without losing success probability

LDA asymptotically achieves the same
projection as optimal
when weakly correlated (Σ is identity matrix)
PCA is nearly equivalent to optimal/ LDA

? extend to non-Gaussian noise
? comparison to machine-learning techniques
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Thank you!
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