ROBUST PROFILING FOR DPA-STYLE ATTACKS

Carolyn Whitnall¹, Elisabeth Oswald¹

¹Department of Computer Science, University of Bristol

carolyn.whitnall@bris.ac.uk

September 2015

C. WHITNALL (UNIVERSITY OF BRISTOL)

INTRODUCTION

Top line: Extracting 'portable' power models for DPA attacks.

Outline:

- Preliminaries: 'Standard' DPA; different 'types' of power model; unsupervised (k-means) clustering.
- Proposed methodology: unsupervised clustering for building nominal power models.
- ► Experimental results.

C. WHITNALL (UNIVERSITY OF BRISTOL)

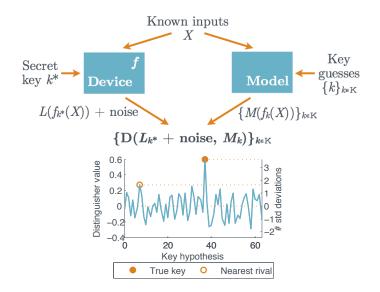
INTRODUCTION

Top line: Extracting 'portable' power models for DPA attacks.

Outline:

- Preliminaries: 'Standard' DPA; different 'types' of power model; unsupervised (k-means) clustering.
- Proposed methodology: unsupervised clustering for building nominal power models.
- ► Experimental results.

'STANDARD DPA ATTACK'



DIFFERENT TYPES OF POWER MODEL

LEVEL	CORRESPONDENCE	ASSOCIATED ATTACKS					
Direct	$M \approx L$						
	$M \approx \alpha L$						

DIFFERENT TYPES OF POWER MODEL

LEVEL	CORRESPONDENCE	ASSOCIATED ATTACKS					
Direct	$M \approx L$	Bayesian templates, stochastic profiling					
Proportional	$M \approx \alpha L$	Pearson's correlation coefficient					

LEVEL	CORRESPONDENCE	ASSOCIATED ATTACKS				
Direct	$M \approx L$	Bayesian templates, stochastic profiling				
Proportional	$M \approx \alpha L$	Pearson's correlation coefficient				
Ordinal	$ \{ z M(z) < M(z') \} \approx $ $ \{ z L(z) < L(z') \} \forall z' \in \mathcal{Z} $	Spearman's rank correlation coefficient				

LEVEL	CORRESPONDENCE	ASSOCIATED ATTACKS					
Direct	$M \approx L$	Bayesian templates, stochastic profiling					
Proportional	M pprox lpha L	Pearson's correlation coefficient					
Ordinal	$ \{z M(z) < M(z')\} \approx \\ \{z L(z) < L(z')\} \ \forall z' \in \mathcal{Z} $	Spearman's rank correlation coefficient					
Nominal	$\{z M(z) = M(z')\} pprox \{z L(z) = L(z')\} \ \forall z' \in \mathcal{Z}$	'Partition'-based: mutual information, variance ratio, etc.					

LEVEL	CORRESPONDENCE	ASSOCIATED ATTACKS				
Direct	$M \approx L$	Bayesian templates, stochastic profiling				
Proportional	$M \approx \alpha L$	Pearson's correlation coefficient				
Ordinal	$ \{z M(z) < M(z')\} \approx \\ \{z L(z) < L(z')\} \ \forall z' \in \mathcal{Z} $	Spearman's rank correlation coefficient				
Nominal	$\{z M(z) = M(z')\} \approx \{z L(z) = L(z')\} \forall z' \in \mathcal{Z}$	'Partition'-based: mutual information, variance ratio, etc.				

Assumption: Number or characteristics of the underlying classes are *a priori* unknown (unlike supervised classification).

Method: Large selection of iterative trial-and-error solutions:

- Cluster models vary: hierarchical, centroid-based, density- or distribution-based, graph-based ...
- 'Similarity' measures vary: Euclidean distance, correlation, Hamming, Manhattan...

Assumption: Number or characteristics of the underlying classes are *a priori* unknown (unlike supervised classification).

Method: Large selection of iterative trial-and-error solutions:

- Cluster models vary: hierarchical, centroid-based, density- or distribution-based, graph-based ...
- 'Similarity' measures vary: Euclidean distance, correlation, Hamming, Manhattan...

Assumption: Number or characteristics of the underlying classes are *a priori* unknown (unlike supervised classification).

Method: Large selection of iterative trial-and-error solutions:

- Cluster models vary: hierarchical, centroid-based, density- or distribution-based, graph-based ...
- 'Similarity' measures vary: Euclidean distance, correlation, Hamming, Manhattan...

Assumption: Number or characteristics of the underlying classes are *a priori* unknown (unlike supervised classification).

Method: Large selection of iterative trial-and-error solutions:

- Cluster models vary: hierarchical, centroid-based, density- or distribution-based, graph-based ...
- 'Similarity' measures vary: Euclidean distance, correlation, Hamming, Manhattan ...

PROPOSED METHODOLOGY

GENERAL STRATEGY

- Partition the profiling traces according to the intermediate values and compute the means {t̄_z}_{z∈Z}.
- **2** Obtain a mapping $M : \mathbb{Z} \longrightarrow \mathcal{M}$ by clustering the mean traces.
 - Values in Z not represented in the profiling dataset are mapped to cluster C + 1 (i.e. an 'other' category).
- **3** Use *M* as the (nominal) power model in 'partition-based' DPA against the target traces.

EXAMPLE INSTANTIATION

Clustering algorithm: Principal component analysis followed by *k*-means clustering.

DPA distinguisher: Univariate and multivariate variance ratio.

Benchmark: Correlation DPA using the first principal component to approximate a 'proportional' power model.

C. WHITNALL (UNIVERSITY OF BRISTOL)

PROPOSED METHODOLOGY

GENERAL STRATEGY

- Partition the profiling traces according to the intermediate values and compute the means $\{\bar{\mathbf{t}}_z\}_{z\in\mathcal{Z}}$.
- **2** Obtain a mapping $M : \mathcal{Z} \longrightarrow \mathcal{M}$ by clustering the mean traces.
 - Values in \mathcal{Z} not represented in the profiling dataset are mapped to cluster C + 1 (i.e. an 'other' category).
- **3** Use *M* as the (nominal) power model in 'partition-based' DPA against the target traces.

EXAMPLE INSTANTIATION

Clustering algorithm: Principal component analysis followed by *k*-means clustering.

DPA distinguisher: Univariate and multivariate variance ratio.

Benchmark: Correlation DPA using the first principal component to approximate a 'proportional' power model.

C. WHITNALL (UNIVERSITY OF BRISTOL)

GENERAL STRATEGY

- Partition the profiling traces according to the intermediate values and compute the means $\{\bar{\mathbf{t}}_z\}_{z\in\mathcal{Z}}$.
- 2 Obtain a mapping $M : \mathcal{Z} \longrightarrow \mathcal{M}$ by clustering the mean traces.
 - Values in \mathcal{Z} not represented in the profiling dataset are mapped to cluster C + 1 (i.e. an 'other' category).
- Use *M* as the (nominal) power model in 'partition-based' DPA against the target traces.

EXAMPLE INSTANTIATION

Clustering algorithm: Principal component analysis followed by *k*-means clustering.

DPA distinguisher: Univariate and multivariate variance ratio.

Benchmark: Correlation DPA using the first principal component to approximate a 'proportional' power model.

C. WHITNALL (UNIVERSITY OF BRISTOL)

GENERAL STRATEGY

- Partition the profiling traces according to the intermediate values and compute the means $\{\bar{\mathbf{t}}_z\}_{z\in\mathcal{Z}}$.
- **2** Obtain a mapping $M : \mathcal{Z} \longrightarrow \mathcal{M}$ by clustering the mean traces.
 - Values in \mathcal{Z} not represented in the profiling dataset are mapped to cluster C + 1 (i.e. an 'other' category).
- 3 Use *M* as the (nominal) power model in 'partition-based' DPA against the target traces.

EXAMPLE INSTANTIATION

Clustering algorithm: Principal component analysis followed by *k*-means clustering.

DPA distinguisher: Univariate and multivariate variance ratio.

Benchmark: Correlation DPA using the first principal component to approximate a 'proportional' power model.

C. WHITNALL (UNIVERSITY OF BRISTOL)

GENERAL STRATEGY

- Partition the profiling traces according to the intermediate values and compute the means $\{\bar{\mathbf{t}}_z\}_{z\in\mathcal{Z}}$.
- 2 Obtain a mapping $M : \mathcal{Z} \longrightarrow \mathcal{M}$ by clustering the mean traces.
 - Values in \mathcal{Z} not represented in the profiling dataset are mapped to cluster C + 1 (i.e. an 'other' category).
- **3** Use *M* as the (nominal) power model in 'partition-based' DPA against the target traces.

EXAMPLE INSTANTIATION

Clustering algorithm: Principal component analysis followed by *k*-means clustering.

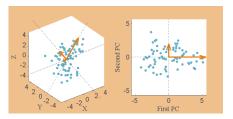
DPA distinguisher: Univariate and multivariate variance ratio.

Benchmark: Correlation DPA using the first principal component to approximate a 'proportional' power model.

C. WHITNALL (UNIVERSITY OF BRISTOL)

PRINCIPAL COMPONENT ANALYSIS

Transforms a large number of correlated variables into uncorrelated components (eigenvectors of covariance matrix). These are sorted in descending order of variance (eigenvalues of covariance matrix).

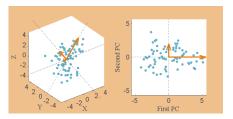


• Existing applications to side-channel analysis:

- Preliminary step to Gaussian template building (avoids inversion problems caused by collinear 'points of interest').
- Pre-processing to increase non-profiled DPA efficiency.
- ► Frequently used in unsupervised clustering to mitigate for sparseness (product space so large that *no* observations are 'close').
- Natural role in our clustering procedure: PCA on the mean traces finds the directions along which data-dependent variation is largest.

PRINCIPAL COMPONENT ANALYSIS

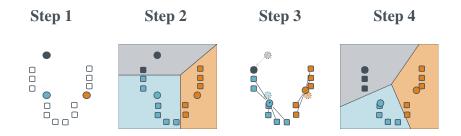
Transforms a large number of correlated variables into uncorrelated components (eigenvectors of covariance matrix). These are sorted in descending order of variance (eigenvalues of covariance matrix).



• Existing applications to side-channel analysis:

- Preliminary step to Gaussian template building (avoids inversion problems caused by collinear 'points of interest').
- Pre-processing to increase non-profiled DPA efficiency.
- ► Frequently used in unsupervised clustering to mitigate for sparseness (product space so large that *no* observations are 'close').
- Natural role in our clustering procedure: PCA on the mean traces finds the directions along which data-dependent variation is largest.

K-MEANS CLUSTERING



Generate k initial "means" within the data domain.

Associate every observation with the nearest mean.

Compute the new means from the resulting clusters.

Repeat 2. and 3. until convergence is reached.

[Images are CC licensed (Attribution-Share Alike) https://commons.wikimedia.org/wiki/File:K-means_steg_1.svg].

Problem: Quality of clustering depends on user-specified factors; 'best' choices *a priori* unknown.

- Optimal number of principal components to keep?
- 'Correct' number of clusters?

Silhouette index for *ith* object...

$$S_i = \frac{b_i - a_i}{\max(a_i, b_i)}$$

a_i: mean distance from *ith* object to other objects in its cluster;
b_i: mean distance from *ith* object to objects in nearest other cluster.
Strategy: Trial different combinations of settings and choose the one which produces the highest average silhouette index.

Problem: Quality of clustering depends on user-specified factors; 'best' choices *a priori* unknown.

- Optimal number of principal components to keep?
- 'Correct' number of clusters?

Silhouette index for *i*th object...

$$S_i = \frac{b_i - a_i}{\max(a_i, b_i)}$$

▶ a_i : mean distance from i^{th} object to other objects in its cluster;

 \triangleright b_i : mean distance from i^{th} object to objects in nearest other cluster.

Strategy: Trial different combinations of settings and choose the one which produces the highest average silhouette index.

Problem: Quality of clustering depends on user-specified factors; 'best' choices *a priori* unknown.

- Optimal number of principal components to keep?
- 'Correct' number of clusters?

Silhouette index for *i*th object...

$$S_i = \frac{b_i - a_i}{\max(a_i, b_i)}$$

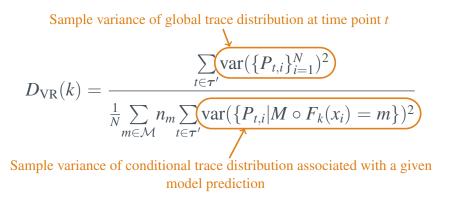
a_i: mean distance from *ith* object to other objects in its cluster;
b_i: mean distance from *ith* object to objects in nearest other cluster.
Strategy: Trial different combinations of settings and choose the one which produces the highest average silhouette index.

$$D_{\mathrm{VR}}(k) = \frac{\sum_{t \in \tau'} \operatorname{var}(\{P_{t,i}\}_{i=1}^N)^2}{\frac{1}{N} \sum_{m \in \mathcal{M}} n_m \sum_{t \in \tau'} \operatorname{var}(\{P_{t,i} | M \circ F_k(x_i) = m\})^2}$$

- ▶ au': attacker's best knowledge about au (want $au' \cap au \neq \emptyset$);
- ▶ *M*: nominal approximation (values in \mathcal{M}) for the leakage;
- ▶ $n_m = \#\{x_i | M \circ F_k(x_i) = m\}$, i.e. the number of observations in the trace set for which the predicted cluster label is *m*.

[See L. Batina, B. Gierlichs, and K. Lemke-Rust, *Differential Cluster Analysis*, CHES 2009, vol.5747 of LNCS, pp.112–127, Springer]

C. WHITNALL (UNIVERSITY OF BRISTOL)



- ▶ τ' : attacker's best knowledge about τ (want $\tau' \cap \tau \neq \emptyset$);
- *M*: nominal approximation (values in \mathcal{M}) for the leakage;
- ▶ $n_m = \#\{x_i | M \circ F_k(x_i) = m\}$, i.e. the number of observations in the trace set for which the predicted cluster label is *m*.

Data

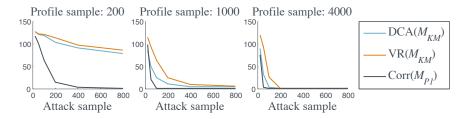
Software: 10,000 traces from an unprotected AES implementation on an ARM microcontroller.

Hardware: 5,000 traces from an unprotected AES implementation on an RFID-type system.

EXPERIMENTAL APPROACH

- Randomly draw (disjoint) profiling and attack samples from the full dataset.
- 2 Derive nominal and proportional power models from the profiling subsample.
- 3 Modify the attack subsample to simulate a variety of discrepancies.
- 4 Perform correlation- and univariate/multivariate VR-based DPA.
- **5** Repeat to estimate guessing entropies (average rank of correct subkey).

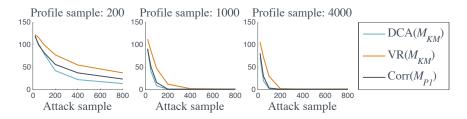
'STRAIGHTFORWARD' SOFTWARE SCENARIO



Guessing entropy of partially profiled DPA attacks against an unprotected software implementation of AES. Window width: 20; reps: 500.

- Clustering strategy 'works': uncertainty about the subkey is reduced.
- Multivariate distinguisher outperforms the univariate one.
- Correlation DPA with our estimated proportional model is more efficient in terms of number of attack *and* number of profiling traces needed.

'PROBLEMATIC' HARDWARE SCENARIO



Guessing entropy of partially profiled DPA attacks against an unprotected hardware implementation of AES. Window width: 10; reps: 500.

- Implementation: two 32-bit registers; byte substitutions occur in parallel with MixColumns operation in previous column.
- Considerable variation in the exploitability of the S-boxes (we report for the most vulnerable one).
- Multivariate distinguisher now outperforms correlation DPA.

DISCREPANCY IN WINDOW WIDTH AND LOCATION

Scenario: Attacker roughly knows the interesting 'windows' but cannot match them precisely.

Simulated distortion: Pick different window sizes and offsets in the attack subsample.

Att	ack			Soft	ware		Hardware						
sample		$\mathbf{DCA}(M_{KM})$		$VR(M_{KM})$		$Corr(M_{P1})$		$\mathbf{DCA}(M_{KM})$		$VR(M_{KM})$		$Corr(M_{P1})$	
size \longrightarrow		50	400	50	400	50	400	50	400	50	400	50	400
Offset	$\begin{array}{c} - \begin{bmatrix} w/2 \\ w/4 \end{bmatrix} \\ \begin{bmatrix} w/4 \\ w/2 \end{bmatrix}$	53 37 34 27 74	1 1 1 4	87 65 72 83 109	1 1 1 1	15 3 1 1 22	1 1 1 1	121 51 15 25 66	65 1 1 1 1	68 66 65 76 113	1 1 1 3	22 20 21 24 90	1 1 1 1

Software attacks vulnerable to this; larger samples help to compensate.

Hardware attacks vulnerable to the most extreme shifts.

C. WHITNALL (UNIVERSITY OF BRISTOL)

DISCREPANCY IN MEASUREMENT RESOLUTION

Scenario: Training and target traces are collected at different resolutions (e.g. due to different equipment). Simulated distortion: Discretise the attack subsample into fewer numbers of equally-sized bins.

Att	ack				Soft	ware			Hardware					
sample		$\mathbf{DCA}(M_{KM})$		$VR(M_{KM})$		Cor	$\operatorname{Corr}(M_{P1})$		$\mathbf{DCA}(M_{KM})$		$VR(M_{KM})$		$r(M_{P1})$	
size \longrightarrow		50	400	50	400	50	400	50	400	50	400	50	400	
Number	of bins	256 128 64 32 16	30 28 38 68 70	1 1 1 1	86 83 81 107 135	1 1 1 133	5 5 9 29 26	1 1 1 1	16 16 17 20 33	1 1 1 1	68 66 62 65 71	1 1 1 1	23 21 29 32 55	1 1 1 1

Some evidence of eventual decline in attack effectiveness as measurements reach their most granular.

DISCREPANCY IN MEASUREMENT ERROR

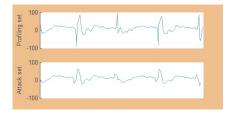


Scenario: Target traces are noisier than training traces (e.g. due to inferior measurement set-up). Simulated distortion: Add a (zero mean) Gaussian-distributed random sample to each measurement.

Attacl	6			Soft	ware		Hardware							
sample		$\mathbf{DCA}(M_{KM})$		$\mathbf{VR}(M_{KM})$		$\operatorname{Corr}(M_{P1})$		DCA	$\mathbf{DCA}(M_{KM})$		$VR(M_{KM})$		$Corr(M_{P1})$	
size \longrightarrow		50	400	50	400	50	400	50	400	50	400	50	400	
Noise factor	1 2 4 8 16	31 71 100 124 115	1 1 3 14 52	93 103 118 115 133	1 8 38 107	9 33 78 103 129	1 1 1 1 14	22 56 71 116 112	1 1 7 40	86 107 100 123 113	1 14 50 85	29 65 80 95 114	1 1 2 9 67	

As expected: all three attacks remain effective, but the number of traces required for equivalent success scales proportionally.

DISCREPANCY IN TRACE PRE-PROCESSING



Scenario: Training traces have been pre-processed in a manner not precisely known to the attacker. Simulated distortion: Apply additional filtering to the attack subsample (moving averages).

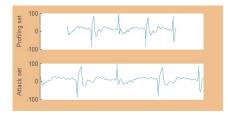
Attack	2			Soft	ware			Hardware						
sample		$\mathbf{DCA}(M_{KM})$		$\mathbf{VR}(M_{KM})$		Cor	$Corr(M_{P1})$		$\mathbf{DCA}(M_{KM})$		$VR(M_{KM})$		$Corr(M_{P1})$	
size \longrightarrow		50	400	50	400	50	400	50	400	50	400	50	400	
Smoothing window	1 2 4 8 16	43 44 51 77 115	1 1 1 5	96 75 104 106 123	1 1 1 3	16 5 5 16 53	1 1 1 1	19 24 74 111 112	1 1 32 82	62 59 100 121 118	1 1 54 94	19 17 79 100 113	1 1 17 64	

Software attacks robust; smoothing pairwise even improves outcomes.

► Hardware attacks less robust (fewer clock cycles; raw traces are already shorter and more coarsely sampled).

C. WHITNALL (UNIVERSITY OF BRISTOL)

NON-FIXED SAMPLING FREQUENCY



Scenario: Misalignment caused by varying frequency in target traces (e.g. for 'hiding'). Simulated distortion: 'Pad' a proportion of sample points with additional values in random positions.

Att	ack				Soft	ware	_	Hardware						
sample		$\mathbf{DCA}(M_{KM})$		$VR(M_{KM})$		$\mathbf{Corr}(M_{P1})$		$\mathbf{DCA}(M_{KM})$		$VR(M_{KM})$		$Corr(M_{P1})$		
size \longrightarrow		50	400	50	400	50	400	50	400	50	400	50	400	
Insertions	(prop.)	$\begin{array}{c} 0.005 \\ 0.01 \\ 0.05 \\ 0.1 \\ 0.5 \end{array}$	133 126 120 141 130	125 111 135 134 113	131 134 133 131 138	124 119 123 127 121	139 128 131 129 116	137 135 123 134 131	122 135 125 131 143	125 127 117 116 131	122 123 126 138 128	97 146 127 135 138	117 139 125 126 134	46 108 131 135 131

All attacks fail; correct key ranking does not improve, even as number of traces increases.

C. WHITNALL (UNIVERSITY OF BRISTOL)

- Unsupervised clustering can recover nominal power models for use in effective 'partition-based' DPA.
 - Requirements in profiling phase are minimal relative to full profiling.
 - Robustness to discrepancies between profiling and attack traces is considerably greater.
- Proportional power models can recovered under the same circumstances, for use in correlation DPA.
 - More efficient, in the case of software experiments; slightly less in the case of hardware experiments.
 - Almost as robust.
- Open question: Are there clustering algorithms which perform better?

Thank you for listening! Any questions?